Technical Memo

ARGONNE NATIONAL LABORATORY

ANL/EES-TM-211

ENERGY REQUIREMENTS FOR MATERIALS USED IN VEHICLES CHARACTERIZED FOR THE TAPCUT PROJECT

RETURN TO REFERENCE FILE TECHNICAL PUBLICATIONS DEPARTMENT

Center for Transportation Research

Energy and Environmental Systems Division ARGONNE NATIONAL LABORATORY

prepared for

U. S. DEPARTMENT OF ENERGY under Contract W-31-109-Eng-38

The facilities of Argonne National Laboratory are owned by the United States Government. Under the terms of a contract (W-31-109-Eng-38) among the U.S. Department of Energy, Argonne Universities Association and The University of Chicago, the University employs the staff and operates the Laboratory in accordance with policies and programs formulated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona Carnegie-Mellon University Case Western Reserve University The University of Cincinnati Illinois Institute of Technology University of Illinois Indiana University The University of Illinois Indiana University of Illinois Indiana University of Illinois Indiana University of Illinois Illinois

The University of Kansas Kansas State University Loyola University of Chicago Marquette University The University of Michigan Michigan State University University of Minnesota University of Missouri Northwestern University University of Notre Dame The Ohio State University
Ohio University
The Pennsylvania State University
Purdue University
Saint Louis University
Southern Illinois University
The University of Texas at Austin
Washington University
Wayne State University
The University of Wisconsin-Madison

- NOTICE -

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This informal report presents preliminary results of ongoing work or work that is more limited in scope and depth than that described in formal reports issued by the Energy and Environmental Systems Division.

Printed in the United States of America. Available from National Technical Information Service, U. S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161

ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439

ANL/EES-TM-211

ENERGY REQUIREMENTS FOR MATERIALS USED IN VEHICLES CHARACTERIZED FOR THE TAPCUT PROJECT

by

Charles L. Hudson Hudson Associates Santa Barbara, California

prepared for

Argonne National Laboratory
Energy and Environmental Systems Division
Center for Transportation Research
under Argonne Contract No. 31-109-38-6727

November 1981

published December 1982

work sponsored by

U.S. DEPARTMENT OF ENERGY Assistant Secretary for Environmental Safety, Protection and Emergency Preparedness Office of Environmental Analyses

PREFACE

Charles L. Hudson, of Hudson Associates, was responsible for developing the method, data sources, critical assumptions, and energy estimates presented in this report. The TAPCUT project manager, Sarah J. LaBelle, of Argonne's Center for Transportation Research, directed the subcontracts under which Mr. Hudson worked and provided essential guidance during the course of the analysis. Margaret K. Singh, of the Center for Transportation Research, suggested that the detailed information Mr. Hudson had developed would be of value to others performing transportation energy analyses and was responsible for organizing and producing this report. Further inquiries about the contents of this volume should be directed to her.

Martin J. Bernard III
Director
Center for Transportation Research

Cherles L. Hodron; of dution washorstee, was responsible for dutalous, the mochos! data courses established processed the mocket assumptions, and course established processed the tale report. The Thronto agrees the tale that the tale report of argumer's distributed the course of the course of the source of the course of the source washed the tale tale tale that the course of the source of the source of the source of the course of the source of the source of the source of the course of the suppliers and the course of the course o

THE RESPONDENCE OF DESCRIPTION OF DE

Contes for Transportation Venezation

CONTENTS

F	FOREWORDvii	-
1	1 REFERENCE DATA ON MATERIAL ENERGY CONTENT	
2	2 ESTIMATED MATERIAL ENERGY CONTENT USED IN TAPCUT	
	2.1 Averaging of Reference Data	2 3 5
1.0	3 DISCUSSION 6	,
	3.1 Accuracy of Estimates	
I	REFERENCES55	;
	TABLES	
	1 Summary of Reference Data on Iron and Steel Energy Content	3
	2 Summary of Reference Data on Aluminum Energy Content)
	3 Summary of Reference Data on Plastics Energy Content	
	4 Summary of Reference Data on Copper Energy Content	
	5 Summary of Reference Data on Rubber Energy Content	
	6 Summary of Reference Data on Lead Energy Content	
	7 Summary of Reference Data on Glass Energy Content	,
	8 Summary of Reference Data on Zinc Energy Content	
	9 Summary of Reference Data on Energy Content of Other Vehicle Materials	3
1	10 Summary of Reference Data on Fuel Distribution by Material 20)
1	11 Energy Estimate Factors for Cold-Rolled Steel 22	2
1	12 Energy Estimate Factors for Stainless Steel 23	3
1	13 Energy Estimate Factors for Cast Iron 24	
1	14 Energy Estimate Factors for Nodular Iron 25	5

TABLES (Cont'd)

15	Energy Estimate Factors for Malleable Iron	2
16	Energy Estimate Factors for Rolled/Wire Copper	27
17	Energy Estimate Factors for Rolled/Drawn Aluminum	28
18	Energy Estimate Factors for Cast Aluminum	29
19	Energy Estimate Factors for Battery Lead	30
20	Energy Estimate Factors for Zinc	31
21	Energy Estimate Factors for Nickel	32
22	Energy Estimate Factors for Titanium	33
23	Energy Estimate Factors for Cobalt	34
24	Energy Estimate Factors for Rubber	35
25	Material Energy Content by Material Production Stage	36
26	Production Energy of Materials for which Little is Known about Energy Content Breakdown, Little or No Recycling is	
	Possible, or Mostly U.S. Production is Estimated	39
27	Fuel Distributions by Material, Scenario, and Year	40
28	TAPCUT Fuel Distributions	46
29	Energy per Pound of Material by Energy Type, Material, Year, and Scenario	47

FOREWORD

Transportation directly consumes one quarter of the energy used in this country, with auto passenger travel accounting for half of the transport sector's energy use. Due to rising fuel prices and intermittent shortages, agencies of federal, state, and local governments have begun to introduce various strategies (combinations of policies and technologies) designed to conserve urban-transportation energy while maintaining a productive economy. The environmental consequences of many of these conservation strategies have not been adequately assessed. As a result, a technology assessment project sponsored by the U.S. Department of Energy, under the direction of David O. Moses, was initiated at Argonne National Laboratory in late 1979, with assistance from Brookhaven and Oak Ridge National Laboratories.

This project, Technology Assessment of Productive Conservation in Urban Transportation (TAPCUT), had the stated goals of providing (1) a description of several alternative strategies promoting energy conservation in urban passenger transportation, (2) a better understanding of the environmental impacts of such strategies, and (3) identification of the constraints on the implementation of such strategies.

Two productive conservation strategies were designed to save energy in urban passenger transportation when substituted for policies now in place. A reference set of impact forecasts was then prepared for these two strategies. One conservation strategy stressed group travel, e.g., transit and carpooling, while the other promoted individual travel in private automobiles. The strategies were designed to cause minimal disruption of lifestyles and the economy while achieving reductions in the consumption of aggregate energy, especially that derived from petroleum.

Travel demand analysis was performed for each of three typical cities under policies now in place and forecast to continue, and under the alternative strategies, i.e., Group Travel Strategy and Individual Travel Strategy. Environmental impact analysis of the forecast travel demand under each strategy was city-specific and included estimation of air and water pollutant burdens along with their associated impacts on human health. Traffic safety impacts were also estimated. Socioeconomic impacts due to vehicle use and vehicle production were assessed. Impacts on physical environment, resources, health, and safety caused by vehicle and fuels production and infrastructure construction were also addressed. The final step was the overall comparison of policy-driven results to the results obtained under the In-Place Policy set.

Two economic and social-organization scenarios also were defined for this project; they differed in gross national product (GNP) growth rate, social organization, retail fuel price, total metropolitan population, average household income, environmental regulations, and types of fuel available for transportation. The two scenarios can be briefly distinguished as Scenario I,

a wealthy economy with high technological success, and Scenario III, a relatively poor economy with low technological success. National urban and city specific forecasts of population and employment characteristics were prepared under each scenario.

The cities were selected using a factor-analysis technique that identified extreme cities along three dimensions relevant to transportation energy use. One dimension, called Megatown, identifies large cities with good transit systems. The second dimension, Sprawlburg, typifies newer, fast-growing, sprawl cities. The Slowtown dimension identifies midwestern industrial cities that are smaller in population than the other two. All metropolitan areas in the nation were related to these three dimensions; an expansion method was then developed in order to make national urban forecasts based on the detailed forecasts of the three typical cities selected to represent the three dimensions.

Automobile and transit vehicle characteristics were projected in detail under several sets of policy and scenario conditions. Three different sets of vehicles were used in the analysis: Set C, the expected technologies, was used for the In-Place Policy and Group Travel Strategy in both scenarios; Set A, designed as the best technology for both conservation and performance, was tested for the Individual Travel Strategy in one scenario; the third set, a modification of Set C, was tested in the other scenario under the Individual Travel Strategy. Vehicles were characterized by size class, engine type, fuel economy, emissions profile, purchase price, operating costs, materials composition, and (for personal vehicles) performance.

The city-specific land-use and demographic forecasts were organized for input to the Urban Transportation Policy Analysis Package. It incorporated state-of-the-art, household-based, disaggregate travel demand models for mode and destination choice with detailed specification of individual household auto ownership by automobile technology. Household characteristics from the base year in each city's travel survey were the basis of the forecasting approach to travel demand. Household records modified for each scenario, combined with the transportation level-of-service forecasts, which varied by policy, for the horizon years 1990 and 2000 drove the travel demand model. Transportation level-of-service parameters included detailed specifications of transit service and automobile characteristics. Both work and nonwork travel are separately forecast and reported for households in three income classes and for three locations within the urban area (center city, suburban, and exurban). Vehicle travel is also reported by area of occurrence for the atmospheric emissions and traffic safety analysis.

Results for the entire TAPCUT project have been presented in a final report entitled Technology Assessment of Productive Conservation in Urban Transportation -- Final Report (Argonne National Laboratory Report ANL/ES-130). This technical memorandum is one in a series of TAPCUT working papers that was selected for publication as a separate document to supplement the final report. The topic covered here is considered to be of interest to

certain researchers/users who would not need to explore the full scope of TAPCUT. Conversely, the detail of presentation herein is inappropriate for the project's final report.

This report presents the method and data used to estimate the energy required by fuel type to produce each material used in the vehicles characterized for the TAPCUT project. Vehicle characterizations for TAPCUT are presented in two reports. The report Vehicle Characterization for the TAPCUT Project: Performance and Cost [by C. Hudson, E. Putnam, and M. Bernard, Argonne National Laboratory Report ANL/EES-TM-171 (Sept. 1981)] contains detailed descriptions of (1) the automobiles, vans, and transit vehicles used in the study and (2) the methods used to characterize the vehicles. In particular, vehicle weights and the distribution of materials used in bodies/ chassis, engines, batteries, and motors are presented. The report Vehicle Characterization for the TAPCUT Project: Materials, Energy, and Residuals of Manufacture [by C. Hudson, E. Putnam, and R. Hildestad, Argonne National Laboratory Report ANL/EES-TM-188 (Nov. 1981)] presents estimates of the energy required by fuel type to produce each of the vehicles and explains the method used to derive these estimates. This current report is a supplement to the latter report. It explains in greater detail the method, data sources, and assumptions about material recycling rates, material import rates, production efficiency factors, and fuel source distributions used in estimating the energy required to produce the vehicle materials.

reference and record the race of markets. This is from the soil than

to govern July 563 Stricts or head age about the relative restricts and interesting according ac

And the state of the second se

the control of the second territy project him been presented in a final few or control of the final few or control of the few or con

ENERGY REQUIREMENTS FOR MATERIALS USED IN VEHICLES CHARACTERIZED FOR THE TAPCUT PROJECT

by

Charles L. Hudson

This report presents the method and data used to estimate the energy required to produce each material used in the vehicles characterized for Argonne's Technology Assessment of Productive Conservation in Urban Transportation (TAPCUT) project. The estimated energy requirements for material production are based both on reference data and on scenario-sensitive projections of material recycling rates, material import rates, production efficiency factors, and industrial fuel distributions. These data and projections are discussed below. On the basis of these projections and the material distributions and weights of specific vehicles, the energy required to produce the specific vehicles characterized for the TAPCUT project is generated. The energy required to produce each such vehicle is presented in Ref. 1.

1 REFERENCE DATA ON MATERIAL ENERGY CONTENT

Reference data pertaining to energy use in material extraction and processing (material energy content) are compiled by material type. Tables 1-9 present these data for iron and steel, aluminum, plastics, copper, rubber, lead, glass, zinc, and other materials. The beginning and end points of each analysis, the percentage of domestic vs. imported ore assumed in each reference, and the percentage of scrap vs. virgin material used in each analysis are reported. The tables also include an evaluation of the quality of each reference and report the year of analysis. Table 10 lists the fuel type distributions of energy required to extract and process various materials. As is evident from the tables, the estimates of energy required to produce each specific material often vary greatly.

2 ESTIMATED MATERIAL ENERGY CONTENT USED IN TAPCUT

2.1 AVERAGING OF REFERENCE DATA

Because the energy estimates provided in the reference data for specific materials often vary widely, an energy content value for each material had to be determined that could be supported by the majority of the references or the most comprehensive reference. Reference data were reconciled, where possible, by converting all data to a common measurement base and correcting for varying beginning and end points of the data analyses. For instance, some references began their analyses with the input of the material to the refinery and ended with mill output, whereas others began at the mine

and ended at the production of a semifinished product. Reference data for a specific material also occasionally differed because they were products of studies made at different times and therefore reflected changing conditions. Plotting the adjusted data showed definite clusters of values for some materials. An average of these values was taken as the most likely energy content. Where no rational reconciliation of data was possible, judgment was used to assign a likely value. Usually, these assignments were based on data given by references that exhibited the most complete and understandable treatment of the subject.

Similar procedures were used to select the fuel distributions of the energy required to produce materials. In general, distributions by fuel type were, for a specific material, in closer agreement than estimates of the energy content of the material. Because material energy content by fuel type differs greatly for primary and recycling processes, energy requirements for both processes were estimated.

The average values determined for material energy content by fuel type were assumed to apply to energy requirements in 1975, the base year for this analysis. These values are reflected in the tables discussed below, which also incorporate material import rates and recycle rates into the estimates of the average energy required to produce each material.

2.2 SCENARIO-SENSITIVE FACTORS

The impacts of productive conservation strategies were examined in TAPCUT in the context of two socioeconomic scenarios: one (Scenario I) a wealthy economy with high technological success and the other (Scenario III) a relatively poor economy with low technological success. The energy required to produce materials is sensitive to such conditions. Different socioeconomic conditions lead to different material import rates, material recycle rates, production efficiencies, and industrial fuel use.

For example, the socioeconomic conditions and government policies in Scenario I were assumed to result in increased exports and initially relaxed environmental control on manufacturing in favor of energy efficiency gains. Under these conditions, production processes would improve greatly, and the improved processes would quickly replace outmoded ones. Imports of ores and fabricated materials would be reduced, and recycling would increase moderately. The use of purchased electricity for materials processing and plant operation would rise as it was substituted for petroleum where possible.

In Scenario III, little improvement was projected in the conservation of either energy or the environment. Lack of environmental control enforcement would result in some transitory increases in plant productivity. However, few new plants would be constructed and the faltering economy inherent in the scenario would require increasing material imports. The amount of

recycling would also decrease. Little change in the existing distribution of industrial fuels was projected.

These characterizations of the scenarios are incorporated in the following material energy analysis by varying material import rates, production efficiency gains, recycle rates, and other factors. These factors and their implications are described more fully below.

2.2.1 Recycling and Import Assumptions

The material production energy that is expended in the United States depends in part on mining sites (U.S. or non-U.S.) and the efficiency of refining operations. In addition, it strongly depends on the degree of recycling (in general, recycled material expends about 20% or less of primary material energy) and the amount of semifabricated material purchased from foreign countries. For materials in the last category, no energy is credited to the United States, but the U.S. balance of payments may be adversely affected.

These four scenario-sensitive factors made it necessary to obtain or estimate, where possible and feasible, energy data for each of the following material production stages: (1) mining, (2) beneficiation (unless included in mining), (3) refining, (4) semifabrication, and (5) final fabrication. These stages may also be defined as (1) ore preparation, (2) manufacture of ingot/pig material or casting — if poured directly from the furnace, (3) manufacture of sheet/wire/plate or other basic material forms purchased by the vehicle industry, and (4) forming/stamping/machining or other processing performed by the industry in the assembly of a vehicle.

In many cases, production energy estimates for each of the above were derived from the reference data and engineering judgment.

Tables 11-24 illustrate, for 14 of the major materials examined in this analysis, the assumptions made regarding import rates, recycling rates, and production efficiency improvements from 1975 to 2000 in the two TAPCUT scenarios. The rationale behind these assumptions for each specific material is also included. Table 25 quantifies the average energy required to produce a pound of each material using these assumptions regarding recycle, import, and efficiency rates. The equations used to derive the values in Table 25 are as follows:

$$E_{P} = (A_{1}\alpha_{1} + A_{2}\alpha_{2} + B\beta)VZ$$

 $E_R = D\theta WZ$

$$E_{MP} = C \phi VZ *$$

$$E_{MR} = C \phi WZ *$$

$$E_T = E_P + E_R + E_{MP} + E_{MR}$$

where

 $E_{\mathbf{p}}$ = Energy expenditure from the mine to a refined product,

 \mathbf{E}_{R} = Energy expenditure from recycled material collection to a refined product,

 E_{MP} = Energy expenditure from the refined product of E_p to the semifabricated mill-end product,

 ${
m E}_{
m MR}$ = Energy expenditure from the refined product of ${
m E}_{
m R}$ to the semifabricated mill-end product,

 E_T = Total energy,

and where

A₁ = Mining or feedstock energy (Btu/lb),

 α_1 = Fraction of ore or material that is mined or extracted in United States,

 A_2 = Processing energy for other ores (Btu/1b),

 α_2 = Fraction of other ore that is processed in United States,

B = Refining energy (Btu/lb),

 β = Refining efficiency factor,

V = Fraction of semifabricated material that originates from virgin material,

Z = Fraction of semifabricated material that is U.S.produced,

D = Scrap processing energy (Btu/lb),

^{*}In E_{MP} and E_{MR} , Z = 1.00 if the material imported is primary material and not yet semifabricated.

- θ = Scrap processing efficiency factor,
- W = Fraction of semifabricated material that originates from recycled material,
- C = Semifabrication energy (Btu/lb), and
- φ = Semifabrication efficiency factor.

Table 26 contains the total energy required for 15 materials for which (1) little information is known about the energy content breakdown, (2) little or no recycling is possible, or (3) production is mostly in the United States. Efficiency improvements are included in the estimates as stated in the table.

The information shown for vehicle assembly is in Btu per pound of vehicle, not per pound of material. (The computer program used to calculate the energy required by fuel type to produce each vehicle incorrectly represented this vehicle fabrication energy per 1b of vehicle as the total energy required for vehicle fabrication. This problem was found at the end of the study and thus was not corrected.)

2.2.2 Fuel Supply Assumptions

Energy distributions by fuel type are scenario-sensitive because the scenarios place varying emphases on the kinds of fuels used and also imply future major fuel-distribution changes. Estimates regarding the changes in percentage distribution of fuel types by scenario and year are shown in Table 27. These estimates are based on data obtained from the references as well as the fuel use projected for the scenarios (see Table 28 and Ref. 22). The rationale for the fuel source distributions for the various materials is presented in Table 27. Fuel distributions are shown for production materials from virgin material and from scrap where appropriate, as well as for semi-fabrication.

2.3 ENERGY PER POUND OF MATERIAL BY FUEL TYPE

Table 29 illustrates the results of the preceding process. For each material, the energy required to produce it under each scenario and in each analysis year is shown. The energy content reflects import rates, recycle rates, and efficiency improvements as well as different fuel distributions for production of the specific materials from virgin material and from scrap material and for semifabrication of the material. Because of cumulative percentage rounding, the total Btu-per-pound-of-material values in Table 29 differ slightly from the $\rm E_T$ values computed in Table 26. An adjustment in hundredths of a percent to reconcile the values would be meaningless because

of the overall accuracy of the estimates, so the computed totals in Table 29 were allowed to stand as long as the differences with E_{T} values were insignificant.

3 DISCUSSION

3.1 ACCURACY OF ESTIMATES

According to the references that assessed the potential accuracy of their findings, ±30% or more potential error was common. Other references, particularly those on the aluminum production cycle, noted ranges varying about 20% from low to high values. The actual values depend on the process path. This work uses averages in all computations and therefore has, at best, confidence level ranges no less than those of the reference data.

The energy per pound of nickel as given by Ref. 5 appears high due to the preponderance of imports. Reference 17 gives the total energy from mine to primary metal as 72,000 Btu/lb. Therefore, assuming 90% imports, the U.S. energy credit should be in the region of 7,000-8,000 Btu/lb instead of the 44,900 Btu/lb given by Ref. 5. Because nickel may become an important constituent of battery vehicles, this disparity is important.

Zinc data are especially suspect because the few references found were too disparate to be reconciled. Engineering judgment was used in selecting an energy value for this study, but the value chosen is not supportable by empirical data. The weakness in zinc data affects the estimate of production energy for zinc chloride because the production energy of this compound was estimated from the atomic weights and production energies of its constituents.

Titanium data are weak for both total energy value and the related fuel distribution by type of fuel. The unusually large percentage of fuels listed in an "other" category by the references illustrates this fact. Lithium data are questionable because the proprietary nature of the lithium production process prevented an adequate analysis by the authors of the references.

Data on ceramics energy and residuals were based on high-fired porcelain insulator technology. It is not known how well these data approximate data for the silicon nitride materials that may be used in future Stirling and Brayton cycle engines.

According to Ref. 5, cobalt is thought to have energy and residuals values like those of copper. How well this approximation holds is unknown.

3.2 APPLICATION OF ESTIMATES IN TAPCUT

The information shown above for Scenarios I and III was also derived for a Scenario II, which assumed an environmentally sensitive society. However, this scenario was not studied in detail in TAPCUT and thus the estimates for it are not shown here. Reference I does contain results of the above process for Scenario II. In Ref. 1, Scenario II is referred to as Technology (Tech) Set B.

Also, early in the project each of the three scenarios was distinctly tied to a specific set of vehicles (Scenario I to Tech Set A, Scenario II to Tech Set B, and Scenario III to Tech Set C). Later in the analysis, it was decided to examine more than one technology set in each of two scenarios (I and III). Technology Set C vehicles were thus examined in Scenarios I and III, and a derivative of Tech Set C was also examined in Scenario III. The estimates made in this report for Scenario I were applied only to Tech Set A vehicles, which were used in only one of the travel policies of Scenario I (Individual Travel). The energy-per-pound-of-material estimates made in this report for Scenario III were applied whenever vehicles in Set C (or a derivative) were assumed, i.e., all travel policies in Scenario III and two travel policies (In Place and Group) in Scenario I. Readers attempting to use data in this report to recalculate the total energy to produce all vehicles under the different scenarios and policies shown in Ref. 22 thus must carefully select the technology set actually used in that reference.

u

Table 1 Summary of Reference Data on Iron and Steel Energy Contenta,b

Reference Nomenclature	Analysis Year	Reference Measurement Units	Energy Content (Btu/1b)	Analysis Beginning Point	Analysis End Point	% Domestic Ore/ % Imported Ore/ % Scrap/% Other Source Material	Energy Reduction Projection	Ref.	Quality of Reference and Additional Comments
Cold-rolled carbon steel	1974-75	Btu/lb	21,000	Mine	Fabricated (Fab.) sheet	NS ^c /NS/d/NS	None	4	Fair; sketchy methodology description refers direct-
Galvanized steel	1974-75	Btu/1b	21,500	Mine	Fab. sheet	NS/NS/d/NS	None	4	ly to automotive materials. See above, Ref. 4.
Aluminized steel	1974-75	Btu/1b	21,500	Mine	Fab. sheet	NS/NS/d/NS	None	4	See above, Ref. 4.
Alloy steel	1974-75	Btu/1b	22,300	Mine	Fab. sheet	NS/NS/d/NS	None	4	See above, Ref. 4.
tainless teel	1974-75	Btu/lb	34,000	Mine	Fab. sheet	NS/NS/d/NS	None	4	See above, Ref. 4.
teel	~1978	10 ⁹ Btu/10 ⁶ 1b	12,530	Mine	NS	18% natural, 54% taconite/ None/28/-	None	5	Fair; furnace end point assumed.
rimary	~1975	10 ⁶ Btu/ton	12,500	Ore	Furnace output	NS/NS/ 18% computed/NS	Qualitative	3	Detailed.
aw steel	1974	MMBtu/ton	9,665	Mine	Furnace output	NS NS	Qualitative	6	Detailed.
teel	1974	10 ⁶ Btu/ton	13,250	NS	NS	NS	34%, '74-'85 47%, '74-2000	7	Poor; furnace end point assumed no explicit
tee1	1980	MBtu/in. ³	17,606	NS	Fab. form assumed	NS	None	8	methodology given. Oriented for other purposes; table presentation only no assumptions given. Refer to auto use. Average steel density =
imary carbon eel	~1971	kWh/ton	23,720	NS	Slab/pig assumed	NS	None	9	Fair; few assumptions given. Unit definition murky — appears 3413 Btu/kWh is conversion used to obtain Btu thermal.
d-rolled bon steel	~1971	kWh/ton	26,451	NS	Givene	NS	None	9	See above, Ref. 9.

9

^aAs far as can be determined, all data either stated in or converted to a fossil fuel Btu basis.

bIron ore --> iron ~ 3500 Btu/1b --> stee1 = 3760 Btu/1b: Refs. 2,3.

CNS = Not stated.

dConsidered but not stated.

eThe term "given" is used to indicate that the analysis end point is identical to the material form given by the reference nomenclature.

C

Table 2 Summary of Reference Data on Aluminum Energy Content

Reference Nomenclature Primary-drawn	Analysis Year	Reference Measurement Units	Energy Content (Btu/1b)	Analysis Beginning Point	Analysis End Point	<pre>% Domestic Ore/ % Imported Ore/ % Scrap/% Other Source Material</pre>	Energy Reduction Projection	Ref.	Quality of Reference and Additional Comments
	1974-75	Btu/1b	110,000	Mine	Drawn sections	NS ^a /NS/b/NS	None	4	Fair; sketchy methodology
Secondary- cast	1974-75	Btu/1b	10,000	Mine	Cast	NS/NS/b/NS	None		description. Refers direct- ly to automotive end use.
Secondary- cast	~1975	10 ⁶ Btu/ton	4,200	Scrapb	Cast	NS/NS/100% ^C /NS		4	See above, Ref. 4.
Pure	~1975	10 ⁶ Btu/ton	119,500	Ore	Furnace	16.3/83.7/Assumed 0/	Qualitative Qualitative	3	Detailed.
Pure	~1978	10 ⁹ Btu/10 ⁶ 1b	244 000		output	100% Imp. aluminac	Qualitative	3	Detailed; uses 30% electrical generating efficiency.
			244,000	Ore	Furnace output	100% bauxite	None	5	Includes energy of anode. Fair. Furnace output assumed. Explicit methodology not
Composite //scrap	~1978	10 ⁹ Btu/10 ⁶ 1b	58,570	Ore/scrap	Furnace output	4.25% bauxite/ 27/57.7/	None	5	stated. See above, Ref. 5.
rimary	1976	106 Btu/ton				11.1% alumina			
rimary	1976	10° Btu/ton	93,900 75,000	Bauxite to alumina plant	Furnace output	NS/NS/Assumed 0/ NS	None	11	Environment oriented; for existing Hall-Heroult plants. Very difficult to extract detail. Mine energy not included. Anode fuel equiv- alent not included.
rimary	1976	10 ⁶ Btu/ton	72,153	alumina plant	Furnace output	NS/NS/Assumed 0/ NS	None	11	Environment oriented; new Hall-Heroult plants. kWh-thermal conversion factor and mine energy not included. Anode fuel equivalent not included.
-1mary	107/	kWh/ton		alumina plant	Furnace output	NS/NS/Assumed 0/ NS	None	11	Environment oriented; new Alcoa Aluminum plant. Mine energy not included. Anode
· Imaly	1976	10 ⁶ Btu/ton	76,500	Bauxite to alumina plant	Furnace output	NS/NS/Assumed 0/ NS	None	11	Environment oriented: Nov. T. P.
imary	1976	10 ⁶ Btu/ton	80,000	Bauxite to	Furnace	NC /NC /A			hall plant. Mine energy not included. Anode fuel equiva- lent not included.
				alumina plant	output	NS/NS/Assumed 0/ NS	None	11	Environment oriented; new Tot plant. Mine energy not included. Anode fuel equiva- lent not included.

Reference Nomenclature	Analysis Year	Reference Measurement Units	Energy Content (Btu/1b)	Analysis Beginning Point	Analysis End Point	% Domestic Ore/ % Imported Ore/ % Scrap/% Other Source Material	Energy Reduction Projection	Ref. No.	Quality of Reference and Additional Comments
Rolled	1971	10 ⁶ Btu/ton	104,000	NS	Given ^d	NS	12.5%, '75-'80 15.8%, '75-'85 22.6%, '75-'90	10	Poor; reference is internally inconsistant. Very high efficiency (34%) assigned to power generation.
Primary	1974	MMBtu/ton	87,875	Mine	Furnace assumed	NS	None	6	Detailed.
Die cast	1980	MBtu/in.3	76,923	NS	Given	NS/NS/46%/NS	None	8	Oriented for other purposes;
									chart only. No supporting data. Refers directly to automotive use.
Primary	1974	10 ⁶ Btu/ton	95,000	NS	Given	NS	24%, '74-'85 30%, '74-2000	7	Poor; little supportive methodology.
Primary	1978	10 ⁶ Btu/ton	120,000	Bauxite	Given	Total Energy Estimate	Qualitative	12	Good; data pt. is average of 139,000 and 101,000 Btu/lb.
						No Scrap		- 355	30% elec. efficiency. Anode fuel equivalent apparently
									included. Total energy estimate.
Primary	1978	10 ⁶ Btu/ton kWh/ton	130,289	Mine	Given	NS/NS/0.0/NS	None	13	Very explicit; Data pt. is average through an author-
									selected range of processes and process steps. Does not include fuel equivalent of anodes. Includes pollution
									control.
Primary	1978	10 ⁶ Btu/ton kWh/ton	138,332	Mine	Given	NS/NS/0.0/NS	None	13	Very explicit; data pt. is average as noted above; includes fuel equivalent of anodes.
Secondary	1978	10 ⁶ Btu/ton	4,250	Scrap	Furnace output	-/-/100%/-	None	13	Very explicit; data pt. is average of 2350 and 6100 Btu/ lb.
Rolled	1975	kWh/ton	125,086	NS	Given	NS	None	9	Fair; definition of units and
			- Carrier						conversion factors used is murky. Appears 3413 Btu/kWh is used.
Cast	1975	kWh/ton	112,117	NS	Given	NS	None	9	Fair; see above, Ref. 9.

ans - Not stated.

bConsidered but not specified.

CThe reference inferred 100% imported alumina but was not explicit.

 $^{^{\}rm d}{\rm The}$ term "given" indicates that the analysis end point is identical to the material form given by the reference nomenclature.

Table 3 Summary of Reference Data on Plastics Energy Content

Reference Nomenclature	Analysis Year	Reference Measurement Units	Energy Content (Btu/1b)	Analysis Beginning Point	Analysis End Point	% Recycled Material	Energy Reduction Projection	Ref. No.	Quality of Reference and Additional Comments
Automotive	1974-75	Btu/1b	25,000	NSª	NS	Not considered	None	4	Fair; sketchy methodology descrip- tion. Refers directly to automotive end use.
Polyethylene battery case	1978-79	10 ⁹ Btu/10 ⁶ 1b	4,800	NS	NS	NS	None	5	Poor; no methodology description. Energy value may be order of magnitude low.
Average all thermoplastic	1971	10 ³ metric tons	57,227	Plant input	Resin	NS	Yr 2000 = 55,000 Btu/1b	3	Detailed; feedstock energy value not included.
Low density polyethylene	1971	10 ⁶ kWh/ 10 ³ metric tons	76,260	Plant input	Resin	NS	Yr 2000 = 76,105 Btu/1b	3	Detailed; see above, Ref. 3.
High density polyethylene	1971	10 ⁶ kWh/ 10 ³ metric tons	39,644	Plant input	Resin	NS	Yr 2000 = 39,439 Btu/1b	3	Detailed; see above, Ref. 3.
Polyvinyl chloride	1971	10 ⁶ kWh/ 10 ³ metric tons	61,955	Plant input	Resin	NS	Yr 2000 = 61,916 Btu/1b	3	Detailed; see above, Ref. 3.
Polystyrene	1971	10 ⁶ kWh/ 10 ³ metric tons	30,771	Plant input	Resin	NS	Yr 2000 = 30,958 Btu/1b	3	Detailed; see above, Ref. 3.
Average all thermoplastic	1973	10 ⁶ Btu/ton	47,800	Feedstock	Polymer	NS	7%, '74-'85 9.3%, '74-'90	10	Fair; energy to make feedstock included.
low density polyethylene	1973	10 ⁶ Btu/ton	46,750	Feedstock	Polymer	NS	8.5%, '74-'85 12.6%, '74-'90	10	Fair; see above, Ref. 10.
High density polyethylene	1973	10 ⁶ Btu/ton	44,300	Feedstock	Polymer	NS	4.7%, '74-'85 9.3%, '74-'90	10	Fair; see above, Ref. 10.
Polyvinyl chloride	1973	10 ⁶ Btu/ton	41,450	Feedstock	Polymer	NS	13.5%, '74-'85 13.5%, '74-'90	10	Fair; see above, Ref. 10.
Polystyrene	1973	10 ⁶ Btu/ton	58,700	Feedstock	Polymer	NS	1.1%, '74-'85	10	Fair; see above, Ref. 10.
Average all thermoplastic	1974	MMBtu/ton	47,619	Feedstock	Polymer	NS	None	6	Detailed; Ref. 6 used in Ref. 10 analysis.
Polyethlene battery case	1979	Bt u/MWh	48,487	Feedstock	Case fabrication	NS	None	14	Detailed; 7.7 1b/MWh.
Thermoplastic polyester	1980	MBtu/in. ³	52,000	Feedstock	Resin inferred	None	None	8	Oriented for other purposes; chart only - no backup information. 36,000 Btu/lb process energy given
Plastics	1975	10 ⁶ Btu/ton	78,500	Feedstock	Resin inferred	None	13.4%, '74-'85 24.8%, '74-2000	7	Fair; little methodology description. 22,500 Btu/lb assigned to feedstock energy value.

ans = Not stated.

Table 4 Summary of Reference Data on Copper Energy Content

Reference Nomenclature	Analysis Year	Reference Measurement Units	Energy Content (Btu/lb)	Analysis Beginning Point	Analysis End Point	% Domestic Ore/ % Imported Ore/ % Scrap/% Other Source Material	Energy Reduction Projection	Ref. No.	Quality of Reference and Additional Comments
Fabricated assumed	1974	Btu/1b	65,700	NSª	Fabricated assumed	NS	None	4	Fair; no supporting method- ology. Refers directly to automotive use.
Primary assumed	1979	10 ⁹ Btu/10 ⁶ 1b	43,970	Mine	Furnace output	66/9.3/10.6/ 14.1	None	5	Fair; little supporting methodology. Includes scrap
									and imports (∿54,212 w/o scrap or imports).
Primary	1975	10 ⁶ Btu/ton	41,200	Mine	Furnace output	NS/NS/45/ 4.5	Qualitative	3	Detailed; concludes energy can be conserved but makes no projection (72,000 Btu/lb w/
									scrap or imports)
Secondary	1975	10 ⁶ Btu/ton	5,150	Furnace input	Furnace output	-/-/100/-	None	3	Detailed.
Rolled	1971	10 ⁶ Btu/ton	31,500	NS	Givenb	NS	None	10	Poor; Comparison with other processes only no supportive data.
Primary	1974	MMBtu/ton	57,905	Mine	Furnace output	NS	Qualitative	6	Detailed; concludes energy can be conserved but makes no projection.
Primary	1974	kWh/ton	46,417	NS	Furnace output	NS	None	9	Fair; no supporting method- ology given. Conversion
									factor description murky.
Rolled	1974	kWh/ton	63,652	NS	Given	NS	None	9	Fair; see above, Ref. 9.
Wire	1974	kWh/ton	52,902	NS	Given	NS	None	9	Fair; see above, Ref. 9.
Rolled	1980	90.50	NS	Furnace input	Furnace output	NS/NS/0% inferred/ 0% inferred	25% @ some future year	15	Good for purpose; copper purity 99.9% not wire bar purity (99.99%), but good for many uses.

ans = Not stated.

bThe term "given" indicates that the analysis end point is identical to the material from given by the reference nomenclature.

Table 5 Summary of Reference Data on Rubber Energy Content

Reference Nomenclature	Analysis Year	Reference Measurement Units	Energy Content (Btu/lb)	Analysis Beginning Point	Analysis End Point	% Recycled Material	Energy Reduction Projection	Ref. No.	Quality of Reference and Additional Comments
Auto rubber	1974	Btu/1b	36,900	NSª	NS	NS	None	4	Fair; no supporting methodology
Styrene butadiene rubber	1975	10 ⁶ Btu/ton	5,350	Plant input	Plant input	NS	None	3	Detailed; process fuel only "majority of energy consumed is contained in the material."
All rubber	1975	10 ⁶ 1bs (prod) 10 ⁶ kWh (prod) 10 ¹² Btu (prod)	14,916	Plant input assumed	Plant output assumed	NS	2.1%, '75-'85 6%, '75-'90	10	Poor; basis of calculation not stated. Inconsistent projec- tions (1980 worse than 1975). Scrap-tire = 20% virgin.
Virgin styrene butadiene rubber	1974	MMBtu/ton	66,475	Feedstock	Product	0.0	None	6	Fair; little supportive data.
Average styrene outadiene oubber	1975	Btu/1b	6,000	Plant input	Plant output	0.0	1r 37 2 3 9, 55 to 272	10	Plant energy only.

ans = Not stated.

Table 6 Summary of Reference Data on Lead Energy Content

Reference Nomenclature	Analysis Year	Reference Measurement Units	Energy Content (Btu/lb)	Analysis Beginning Point	Analysis End Point	% Recycled Material	Energy Reduction Projection	Ref. No.	Quality of Reference and Additional Comments
Auto lead (Pb)	1974	Btu/lb	22,000	NS ^a	NS	NS	None	4	Fair; no supportive data.
Lead in batteries	1979	See remarks	6,258	NS	NS	51	None	5	Poor; Btu/lb derived by dividing total lead energy requirements (Table 12) by total lead wt.
									(Table 9).
Lead in batteries	1979	Btu/MWh	11,699	Mine	Product	56	None	14	Detailed; lead and lead in lead oxide = 28.9 lb/MWh (2000 cycles) based on C&D C75-15 battery.
									Fabrication energy = 3114 Btu/1b Pb.
Primary	1979	Btu/MWh	13,405	Mine	Primary	0	None	14	Detailed; based on 12.7 1b primary Pb in MWh (2000 cycle) battery.
Recovered	1979	Btu/MWh	4,772	Furnace input	Furnace output	100	None	14	Detailed; based on 16.2 lb recovered Pb in MWh battery.

aNS = Not stated.

Table 7 Summary of Reference Data on Glass Energy Content

Reference Nomenclature	Analysis Year	Reference Measurement Units	Energy Content (Btu/1b)	Analysis Beginning Point	Analysis End Point	% Recycled Material	Energy Reduction Projection	Ref. No.	Quality of Reference and Additional Comments
Fabricated glass	1974	Btu/1b	13,000	NSª	NS	NS	None	4	Fair; no supporting methodology detail. Refers to auto product.
All glass	1975	10 ¹² Btu/10 ⁹ 1b	8,088	Mine assumed	Product	NS	None	16	Good.
Container glass	1975	10 ⁶ Btu/ton	5,500	Fab. plant	Product	NS	None	3	Detailed; excludes raw material preparation, product handling, and space conditioning.
Container ;lass	1975	10 ⁶ Btu/ton	6,850	Raw material	Product	NS	None	3	Detailed; above data point plus manufacturing fuel equivalent energy consumption (p. 203, Table 3).
ontainer lass	1974	MMBtu/ton	9,105	Mine	Product	NS	None	6	Detailed.

a_{NS} = Not stated.

Analysis

End

Point

NS

Given b

Given

Given

Given

Given

Gi ven

% Domestic Ore/

% Imported Ore/

% Scrap/% Other

Source Material

NS

42/13/39/6

100/0/0/0

NS/NS/NS/5

NS

NS

NS

Energy

Reduction

Projection

None

None

None

None

None

None

None

Ref.

use.

tion.

in.3

No.

5

5

Quality of Reference

and Additional Comments

Fair; see above. Ref. 9.

aNS	-	Not	sta	ted.

Reference

Nomenclature

Fabricated

Primary

assumed

Primary

assumed

Die cast

Primary

Rolled

Cast

Analysis

Year

1974

1979

1979

1980

1975

1975

1975

Reference

Measurement

Units

Btu/1b

109 Btu/106 1b

10⁹ Btu/10⁶ 1b

MBtu/in.3

kWh/ton

kWh/ton

kWh/ton

Energy

Content

(Btu/1b)

45,500

5,980

11,190

22,093

33.447

39,591

43,857

Analysis

Beginning

Point

NSa

Mine

Mine

Mine

assumed

Mine

assumed

Mine

assumed

Mine

assumed

bThe term "given" indicates that the analysis end point is identical to the material form given by the reference nomenclature.

Table 9 Summary of Reference Data on Energy Content of Other Vehicle Materials

Material	Reference Nomenclature	Analysis Year	Reference Measurement Units	Energy Content (Btu/1b)	Analysis Beginning Point	Analysis End Point	% Domestic Ore/ % Imported Ore/ % Scrap/% Other Source Material	Energy Reduction Projection	Ref. No.	Quality of Reference and Additional Comments
Lithium	Metal assumed	1975	10 ⁹ Btu/10 ⁶ 1b	197,800	Mine assumed	Metal	NS ^a	None	5	Fair.
Lithium sulfide	Battery product	1975	10 ⁹ Btu/10 ⁶ 1b	63,000	Mine assumed	Product	100/NS/NS/NS	None	5	Fair; 30.2% lithium, 69.8% sulfur.
Lithium chloride	Battery product	1975	10 ⁹ Btu/10 ⁶ 1b	36,400	Mine assumed	Product	100/NS/NS/NS	None	5	Fair.
otassium	assumed	1975	10 ⁹ Btu/10 ⁶ 1b	4,680	NA	Product	NA ^b	None	5	Fair.
ydroxide ilicon	Product	1975	10 ⁹ Btu/10 ⁶ 1b	60,000	NS	Product	NS	None	5	Fair.
ilicon	Product	1975	10 ⁶ Btu/ton	38,500	Mine	Product	NS	None	10	Detailed.
obalt	Product assumed	1975	10 ⁹ Btu/10 ⁶ 1b	43,970	Mine assumed	Product	NS	None	5	Fair; ref. assumes similar to copper.
eramics	Product	1976	10 ⁶ Btu/ton	40,000	Mine assumed	Product	NS	None	2	Detailed; engineering estimate. Assumes hig temperature ceramics similar to hard
										porcelain.
int	Auto product	1974	Btu/1b	7,000	NA	Product	NA	None	4	Fair; no supporting detail. Auto oriented
und adeners	Auto product	1974	Btu/1b	7,000	NA	Product	NA	None	4	See above, Ref. 4.
lfur	Product	1975	10 ⁶ Btu/ton	443	Mine assumed	Product	NS	None	14	Detailed; average of frasch and smelter ga
dium	Metal	1975	10 ⁶ Btu/ton	46,000	Mine	Product	NS	None	17	Detailed; 1499 Btu/lb mining and salt puri- fication.
			Tacalist a				OR POLICE TO SERVICE	nes .		
aphite	Product	1975	10 ⁶ Btu/ton	80,000	Petroleum	Product	NS	None	17	See above, Ref. 17.
nc loride	Product	1975	Btu/1b	18,579	Mine	Product	NA	NA	Eng. Esti- mate	Poor; 48% zinc, 52% chlorine on an atomic weight basis. Zinc 33,447 Btu/lb, chlori = 4,854 Btu/lb.

aNS = Not stated.

bNA = Not applicable.

c179,260 Btu/lb expended in the U.S.; 185,140 Btu/lb expended when energy for mining (outside the U.S.) is included.

Table 10 Summary of Reference Data on Fuel Distribution by ${\tt Material}^a$

Material	Coal (%)	Petroleum (%)	Natural Gas (%)	Liquefied Petroleum Gas (%)	Fuel Electricity (%)	Hydro- electricity (%)	Other (%)	Ref. Nos.	Remarks
Primary iron and steel	69.2	5.9	19.5	Negligible	5.5	_	_	2,3	Avg. of reference values.
Scrap to iron and steel	30.2/19.8	2.1/5.4	36.4/56.0	-	21.5/19.1	-	9.8/	18	Cast iron foundary/cast steel
Primary aluminum	0.5	3.5					inc. in coal		foundary coal derived.
S 1		3.3	38	0.4	36.9	20.6		13	U.S. energy expenditure 1973 Bayer production of alumina required 6.3 x 10 ⁶ Btu elec and 23.4 x 10 ⁶ Btu/ ton-aluminum gas or oil
Scrap to aluminum	9.9/3.6/ 7.8	4.6/17.3/ 8.8	66.7/60.5/	-	19.1/8.6 15.6	-	0/10.0/ 5.0	18	Rolling and drawing aluminum/ Secondary nonferrous/Average scrap to rolled aluminum. Coal for drawing and rolling derived, includes "other."
lastics	Negligible	26.4	66.3		7.2		-	14	For polyethylene; derivative
rimary copper	54.6	22.6	-	-	22.8	-	-	3	fuel credit not included. Assumes coke derived from
opper	3.5/3.6/ 3.5	20.3/17.3/	43.9/60.5 52.9		24.9/8.6 16.1	#21.5(1,0%) \$10.00,000 #11.119%,2 75,9,100 23.300,000	7.6/10.0 8.8	18	coal. Rolling and drawing Cu/ Secondary nonferrous/Average scrap to rolled drawn copper. Coal drawing and rolling copper derived, includes "other."
rgin rubber	0.1	47.8	53.9	-	9.7	-	(11.5)	6	Other is a credit.
imary lead	29.0	3.3	22.9	-	35.7	- <u>-</u>	9.0	14	other is a credit.
condary lead	29.2	3	28.4	-	16.4	NAME OF TAXABLE PARTY.			
l glass	2.0	17.5	68.0	UPL ST	10.0		22.9	14	"Other" not defined.
ıc	50.0	0.3	48.9	100	The second		***	19	1.3% not accounted for by reference.
			100	15.01	see remark		1.0	20	'72 census may have distributed electricity into its fuel components. '75 census says data are poor.

Table 10 (Cont'd)

Material	Coal (%)	Petroleum (%)	Natural Gas (%)	Liquefied Petroleum Gas (%)	Fuel Electricity (%)	Hydro- electricity (%)	Other (%)	Ref. Nos.	Remarks
Sodium	9.6	0.4	received to	Clab, Duetor	89	Money Etc. (Bru/15) - 1	1.2	17	Steam assumed to come from coal.
Titanium	Negligible	7.4	2.4	100° 100	66.5	6,000	24	17	Average of kroll and sodium reduction processes.
Electrolytic nickel	22.0	6.6	27.0	or extent 645	44.4		0.8 - 0.	17	Steam assumed to be coal- derived.
Frasch sulfuric acid	one property of the contract o	ng granggile Ran Comda.	94.4	TARREST OF THE PARTY OF THE PAR	0.5	A 1007-	5.1	14	
Recovered sulfur	0.0	0.0	0.0	Citatency	0.0		0.0	14	100% exothermic reaction.
Sound deadeners	0.8	23.8	17.3	0.1	15.9	a to the other	42.2	10	Assumes "sound deadeners" similar to pulp and paper industry. Steam assumed to be coal-derived. "Other" in
								*	cludes wood chips, bark, etc
Paints	22.6	17.8	38.7	Satrad	20.9	-	Inc. in coal	18	Coal-derived.
Cast aluminum	7.7	2.5	72.5	- 555	17.4		Inc. in coal	18	Coal-derived.
Ceramics	19.4/21.8/	6.1/7.3/ 7.0	61.1/66.2/61.9	- 100	13.3/8.7/	3,000-	Inc. in coal	18	Electrical porcelain/Nonclay refactories/Average.
Tires	17.5	26.4	35.8	- 0.65 - 0.65	20.3	1500	Inc. in coal	18	Coal-derived.
Carbon/graphite	10 000 000	19.6	39.6	1 1	40.9		Inc. in pet.	18	Petroleum-derived.
Vehicle fabrication	20.4	6.3	52.5	0.4	20.4	procisi- ser	School Acc	4,18	Ref. 4 for Chrysler, Ref. 18 for all vehicle manufacturing

^aPercentages may not add to 100% because of rounding or assumed "negligible" values.

Table 11 Energy Estimate Factors for Cold-Rolled Steel

Mining or Feedstock Energy (Btu/1b),	Ore or Material Fraction Mined or Extracted in U.S., α_1	Processing Energy for Other Ores (Btu/1b),	Fraction of Other Ores Processed in U.S.,	Refining Energy (Btu/lb), B	Refining Effi- ciency Factor, β	Virgin Material Fraction, V	Scrap- Processing Energy (Btu/1b), D	Scrap- Processing Efficiency Factor,	Recycled Material Fraction, W	Semifab- rication Energy (Btu/1b), C	Semifab- rication Efficiency Factor, \$\phi\$	Fraction of Semi- fabricated Material Produced in U.S., Z
3,760 ^b	0.63 0.63 0.63	0.0	0.0	16,090 ^c	1.0 0.85 0.60	0.72 ^d 0.72 0.66	7,000 ^e	1.0 0.85 0.8	0.28 ^d 0.28 0.34	5,750 [£]	1.0 0.9 0.7	1.0 1.0 1.0
	0.63				0.58	0.64		0.8	0.36		0.7	1.0
3,760 ^b	0.63 0.63 0.63	0.0	0.0	16,090 ^c	1.0 0.85 0.87	0.72 ^d 0.72 0.75	7,000 ^e	1.0 0.9 0.95	0.28 ^d 0.28 0.25 0.20	5,750 ^f	1.0 0.9 0.95 0.9	1.0 1.0 0.9 0.85
	Feedstock Energy (Btu/1b), A ₁ 3,760 ^b	Minting or Freedstock Fraction Fraction Mined or Extracted in U.S., α1	Mining or Feedstock Fraction Mined or Energy Fraction Mined or Extracted In U.S., a A2	Minting or Feedstock Fraction Minting or Extracted Fraction Minting or (Btu/1b), Minting of (Btu/1b),	Mintag or Feedstock Fraction Material Feedstock Fraction Mined or (Btu/lb), A1	Minting or Feedstock Feed	Mining or Feedstock Feedst	Mintag or Feedstock Fraction Material Energy Feedstock Fraction Mintage or (Btu/lb), A	Mining or Material Energy Feedstock Fraction Mined or Refining Energy Freedstock Fraction Mined or City Fraction Mined or City Fraction Mined or City City Mined or City City	Mining or Material Fraction Fredstock Fraction Mined or Strap- Fredstock Fraction Mined or Strap- Fredstock Material F	Mining or Feedstock Fraction Energy (Btu/lb), A	Mintag or Energy (Btu/1b), A Mintag or (Btu/1b), A Mintage (Btu/1b), B Mintage

^aScenario I Rationale: Industry maintains export position. Initial relaxation of environmental controls helps rapid efficiency improvement but sloys in later years when strict controls reinstituted. New refining plants drastically improve efficiency. Processing efficiency improvements not as great due to high technology level. Scrap recycling gains favor as energy costs climb.

Scenario III Rationale: Conservation ethic low. Little interest in expending funds for tighter environmental control. Major efficiency gains due to environmental control default. Little capital for more efficient plants. Productivity lessens to the point of requiring fabricated steel imports. Recycling struggling to hold rate and may drop due to lack of incentive and R&D funds. U.S. mines capable of supplying reduced U.S. foundry need. Imports could be more but reduced sales lessen need. Some efficiencies worsen because of plant aging and then improve slightly as some new plants come on line.

bRef. 3.

CRefs. 5, 11 corrected for scrap.

d_{Ref.} 5.

eEngineering estimate.

fDerived.

Table 12 Energy Estimate Factors for Stainless Steel

Scenario/ Year ^a	Mining or Feedstock Energy (Btu/lb),	Ore or Material Fraction Mined or Extracted in U.S., a ₁	Processing Energy for Other Ores (Btu/1b),	Fraction of Other Ores Processed in U.S.,	Refining Energy (Btu/lb), B	Refining Effi- ciency Factor, β	Virgin Material Fraction, V	Scrap- Processing Energy (Btu/1b), D	Scrap- Processing Efficiency Factor, 0	Recycled Material Fraction, W	Semifab- rication Energy (Btu/lb), C	Semifab- rication Efficiency Factor, \$	Fraction of Semi- fabricated Material Produced in U.S., Z
I/1975 1980 1990 2000	3,760 ^b	0.63 0.63 0.63	0.0	0.0	26,090 ^c	1.0 0.85 0.65 0.63	0.85 0.85 0.83 0.81	8,000 ^c	1.0 0.85 0.8 0.8	0.15 0.15 0.17 0.19	7,750 ^c	1.0 0.9 0.8 0.8	1.0 1.0 1.0
111/1975 1980 1990 2000	3,760 ^b	0.63 0.63 0.63 0.63	0.0	0.0	26,090 ^c	1.0 0.9 0.95 0.9	0.85 0.85 0.9 0.9	8,000 ^c	1.0 0.9 0.95 0.9	0.15 0.15 0.1 0.1	7,750 ^c	1.0 0.9 0.95 0.9	1.0 1.0 0.8 0.75

^aScenario I Rationale: Generally the same as for cold-rolled steel (Table 11) except recycling technology not as well developed.

Scenario III Rationale: Generally the same as for cold-rolled steel -but specialty nature of stainless and lack of productivity forces higher imports of fabricated material.

b_{Ref.} 3.

1

 $^{^{\}rm C}\!\!$ Appears to have higher processing energy than cold-rolled steel according to Refs. 4 and 9.

Table 13 Energy Estimate Factors for Cast Iron

Scenario/ Year ^a	Mining or Feedstock Energy (Btu/1b),	Ore or Material Fraction Mined or Extracted in U.S., α_1	Processing Energy for Other Ores (Btu/1b),	Fraction of Other Ores Processed in U.S.,	Refining Energy (Btu/1b), B	Refining Effi- ciency Factor,	Virgin Material Fraction, V	Scrap- Processing Energy (Btu/1b), D	Scrap- Processing Efficiency Factor, 0	Recycled Material Fraction, W	Semifab- rication Energy (Btu/lb), C	Semifab- rication Efficiency Factor, ¢	Fraction of Semi- fabricated Material Produced in U.S., Z
I/1975 1980 1990 2000	3,500 ^b	0.63 0.63 0.63	0.0	0.0	7,800 ^c	1.0 0.93 0.83 0.8	0.72 ^d 0.72 0.66 0.64	7,800 ^e	1.0 0.93 0.83 0.8	0.28 ^d 0.28 0.34 0.36	0.0 ^e	1.0 1.0 1.0	1.0 1.0 1.0
111/1975 1980 1990 2000	3,500 ^b	0.63 0.63 0.63 0.63	0.0	0.0	7,800 ^c	1.0 0.95 0.95 0.9	0.72 ^d 0.72 0.75 0.8	7,800 ^e	1.0 0.95 0.95 0.9	0.28 ^d 0.28 0.25 0.2	0.0 ^e	1.0 1.0 1.0 1.0	1.0 1.0 0.9 0.85

^aScenario I Rationale: Generally the same as for cold-rolled steel (Table 11) except furnace part of refining operation may have less chance for efficiency improvement.

Scenario III Rationale: Generally the same as for cold-rolled steel. Furnace part of refining operation may have less chance of efficiency gain.

b_{Ref. 3.}

CDerived from Ref. 4 and corrected for scrap.

d_{Ref.} 5.

eIn semifabricated form at furnace output.

Table 14 Energy Estimate Factors for Nodular Iron

Scenario/ Year ^a	Mining or Feedstock Energy (Btu/1b),	Ore or Material Fraction Mined or Extracted in U.S., a ₁	Processing Energy for Other Ores (Btu/lb), A2	Fraction of Other Ores Processed in U.S.,	Refining Energy (Btu/lb), B	Refining Effi- ciency Factor, β	Virgin Material Fraction,	Scrap- Processing Energy (Btu/1b), D	Scrap- Processing Efficiency Factor, 0	Recycled Material Fraction, W	Semifab- rication Energy (Btu/lb), C	Semifab- rication Efficiency Factor,	Fraction of Semi- fabricated Material Produced in U.S., Z
1/1975 1980 1990 2000	3,500 ^b	0.63 0.63 0.63 0.63	0.0	0.0	11,525 ^c	1.0 0.93 0.83 0.8	0.72 ^d 0.72 0.66 0.64	11,525 ^e	1.0 0.93 0.83 0.8	0.28 ^d 0.28 0.34 0.36	0.0 ^e	1.0 1.0 1.0	1.0 1.0 1.0
111/1975 1980 1990 2000	3,500 ^b	0.63 0.63 0.63 0.63	0.0	0.0	11,525 ^c	1.0 0.95 0.95 0.9	0.72 ^d 0.72 0.75 0.8	11,525 ^e	1.0 0.95 0.95 0.9	0.28 ^d 0.28 0.25 0.2	0.0 ^e	1.0 1.0 1.0 1.0	1.0 1.0 0.9 0.85

^aScenario I Rationale: Generally the same as cold-rolled steel (Table 11) except furnace part of refining operation may have less chance for efficiency improvement.

Scenario III Rationale: See Scenario I rationale.

bRef. 3.

CDerived from Ref. 4 and corrected for scrap.

dRef. 5.

eIn semifabricated form at furnace output.

Table 15 Energy Estimate Factors for Malleable Iron

Scenario/ Year ^a	Mining or Feedstock Energy (Btu/1b),	Ore or Material Fraction Mined or Extracted in U.S., a	Processing Energy for Other Ores (Btu/1b),	Fraction of Other Ores Processed in U.S.,	Refining Energy (Btu/lb), B	Refining Effi- ciency Factor,	Virgin Material Fraction, V	Scrap- Processing Energy (Btu/1b), D	Scrap- Processing Efficiency Factor, 0	Recycled Material Fraction, W	Semifab- rication Energy (Btu/1b), C	Semifab- rication Efficiency Factor, \$\phi\$	Fraction of Semi- fabricated Material Produced in U.S., Z
I/1975 1980 1990 2000	3,500 ^b	0.63 0.63 0.63 0.63	0.0	0.0	13,000 ^c	1.0 0.93 0.83 0.8	0.72 ^d 0.72 0.66 0.64	13,000 ^e	1.0 0.93 0.83 0.8	0.28 ^d 0.28 0.34 0.36	0.0 ^e	1.0 1.0 1.0	1.0 1.0 1.0 1.0
111/1975 1980 1990 2000	3,500 ^b	0.63 0.63 0.63 0.63	0.0	0.0	13,000 ^c	1.0 0.95 0.95 0.9	0.72 ^d 0.72 0.75 0.8	13,000 ^e	1.0 0.95 0.95 0.9	0.28 ^d 0.28 0.25 0.2	0.0 ^e	1.0 1.0 1.0	1.0 1.0 0.9 0.85

^aScenario I Rationale: Generally the same as for cold-rolled steel (Table 11) except furnace part of refining operation may have less chance for efficiency improvement.

Scenario III Rationale: See Scenario I rationale.

b_{Ref. 3.}

CDerived from Ref. 4 and corrected for scrap.

d_{Ref.} 5.

eIn semifabricated form at furnace output.

Scenario/ Year ^a	Mining or Feedstock Energy (Btu/lb),	Ore or Material Fraction Mined or Extracted in U.S., a ₁	Processing Energy for Other Ores (Btu/1b),	Fraction of Other Ores Processed in U.S.,	Refining Energy (Btu/lb), B	Refining Effi- ciency Factor, β	Virgin Material Fraction, V	Scrap- Processing Energy (Btu/1b), D	Scrap- Processing Efficiency Factor, 0	Recycled Material Fraction, W	Semifab- rication Energy (Btu/1b), C	Semifab- rication Efficiency Factor, \$\phi\$	Fraction of Semi- fabricated Material Produced in U.S., Z
I/1975 1980 1990 2000	27,250 ^b	0.66 ^c 0.66 0.66 0.7	0.0	0.0	30,500 ^d	1.0 0.93 0.82 0.8	0.9° 0.9 0.83 0.8	5,200 ^e	1.0 0.9 0.8 0.8	0.1° 0.1 0.17 0.2	15,000 ^f	1.0 0.9 0.85 0.8	0.86 ^c 0.86 0.9
111/1975 1980 1990 2000	27,250 ^b	0.66 ^c 0.66 0.60 0.60	0.0	0.0	30,500 ^d	1.0 0.95 0.9 0.9	0.9 ^c .0.9 0.9	5,200 ^e	1.0 0.95 0.9 0.9	0.1 ^c 0.1 0.1 0.1	15,000 ^f	1.0 0.95 0.9 0.9	0.86 ^c 0.85 0.75 0.75

^aScenario I Rationale: Industry moves to become an exporter.
Increased U.S. operations slightly increase energy/lb in 2000.
Efficiency improvements occur rapidly as environmental controls are relaxed but taper off when reimposed. Recycling technology prospects improve as more electric vehicles with easily obtainable copper are accrapped.

Scenario III Rationale: See cold-rolled steel -- Scenario III for general tone (Table 11). Little incentive to recycle even though cost rises due to increasing petroleum costs. The metal may be cheaper from more stable foreign sources so imports rise. Rate of rise moderated by reduced demand.

bBeneficiation included -- Ref. 3.

CRef. 5.

 $^{
m d}{
m Engineering}$ estimate derived from average of Refs. 3, 6, and 7 corrected for scrap and finished metal imports. Tenuous estimate due to disparate source data.

eEngineering estimate.

fRef. 9. Average of rolled and wire estimates less primary estimate.

Table 17 Energy Estimate Factors for Rolled/Drawn Aluminum

Scenario/ Year ^a	Mining or Feedstock Energy (Btu/1b),	Ore or Material Fraction Mined or Extracted in U.S., α_1		Fraction of Other Ores Processed in U.S.,	Refining Energy (Btu/1b), B	Refining Effi- ciency Factor,	Virgin Material Fraction, V	Scrap- Processing Energy (Btu/1b), D	Scrap- Processing Efficiency Factor, 0	Recycled Material Fraction, W	Semifab- rication Energy (Btu/lb),	Semifab- rication Efficiency Factor, ¢	Fraction of Semi- fabricated Material Produced in U.S., Z
I/1975 1980	5,450 ^a	0.14 ^b ,d	19,000°,	d 0.56 ^d	95,550 ^d	1.0	0.75	8,000 ^e	1.0	0.25	20,000 ^e	1.0	1.0
1990 2000		0.14		0.56		0.8	0.48 ^e 0.42 ^e		0.85 0.85	0.52 ^e 0.58 ^e		0.85	1.0
111/1975 1980 1990	5,450 ^a	0.14 ^{b,d} 0.14 0.14	19,000 ^c ,	0.56c,d 0.56 0.56	95,550 ^d	1.0 1.0 0.9	0.75 0.7 0.65	8,000 ^e	1.0 1.0 0.95	0.25 0.3 0.35	20,000 ^e	1.0 1.0 0.95	1.0 1.0 1.0
2000		0.14		0.56		0.85	0.65		0.9	0.35		0.9	1.0

^aScenario I Rationale: Environmental control relaxation permits quick efficiency improvement which holds until new plants (Alcoa type) are in place. However, efficiency improvements are slowed by reimposition of strict environmental controls. Alumina from U.S. clay begins about 1995. Recycling first increases quickly and then slows as "easy" scrap diminishes.

Scenario III Rationale: See cold-rolled steel Scenario III for general tone (Table 11). Recycling interest low. Low investment capital scraps plans for Al clay development and new Alcoa type plants. Reduced demand counters reduced efficiency leaving import situation static.

bBauxite mining.

CAlumina production.

d_{Ref.} 12, Table 10 and p. 22 -- Average.

eEngineering estimate.

Table 18 Energy Estimate Factors for Cast Aluminum

Scenario/ Year ^a	Mining or Feedstock Energy (Btu/lb),	Ore or Material Fraction Mined or Extracted in U.S., a ₁	Processing Energy for Other Ores (Btu/1b),	Fraction of Other Ores Processed in U.S.,	Refining Energy (Btu/lb), B	Refining Effi- ciency Factor, β	Virgin Material Fraction,	Scrap- Processing Energy (Btu/1b), D	Scrap- Processing Efficiency Factor, 0	Recycled Material Fraction, W	Semifab- rication Energy (Btu/lb), C	Semifab- rication Efficiency Factor,	Fraction of Semi- fabricated Material Produced in U.S., Z
I/1975 1980 1990 2000	0.0	0-091	0.0	9-355	0.0	1-1 1-2 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3	0.0	8,000 ^b	1.0 0.95 0.85 0.85	1.0 ^b	2,000 ^c	1.0 0.95 0.85 0.85	1.0 1.0 1.0
III/1975 1980 1990 2000	0.0	equifies, bells eased constan	0.0	tor assert	0.0	- Ti	0.0	8,000 ^b	1.0 1.0 0.95 0.9	1.0 ^b	2,000 ^c	1.0 1.0 0.95 0.9	1.0 1.0 1.0 1.0

Scenario I Rationale: Efficiency improvement follows rolled/drawn case (Table 18). Most attention paid to primary processes. Environmental control (strict) reimposition slows efficiency improvement in 2000.

Scenario III Rationale: See cold-rolled steel (Table 11) and rolled/drawn aluminum (Table 17) Scenario III.

b100% scrap per Ref. 4.

CEngineering estimate.

Table 19 Energy Estimate Factors for Battery Lead

Scenario/ Year ^a	Mining or Feedstock Energy (Btu/1b),	Ore or Material Fraction Mined or Extracted in U.S., a ₁	Processing Energy for Other Ores (Btu/1b),	Fraction of Other Ores Processed in U.S.,	Refining Energy (Btu/lb), B	Refining Effi- ciency Factor, β	Virgin Material Fraction, V	Scrap- Processing Energy (Btu/1b), D	Scrap- Processing Efficiency Factor, 0	Recycled Material Fraction, W	Semifab- rication Energy (Btu/lb), C	Semifab- rication Efficiency Factor, \$\phi\$	Fraction of Semi- fabricated Material Produced in U.S., Z
I/1975 1980 1990 2000	4,395 ^b	0.95 ^b 0.95 0.97 0.97	4,990 ^c	1.0 ^c 1.0 1.0	4,005 ^d	1.0 1.0 0.85 0.85	0.44 ^e 0.44 0.40 0.40	4,772 ^e	1.0 1.0 0.85 0.85	0.56 0.56 0.60 0.60	3,114 ^e	1.0 1.0 0.85 0.85	1.0 1.0 1.0
111/1975 1980 1990 2000	4,395 ^b	0.95 ^b 0.95 0.95 0.95	4,990 ^c	1.0 ^c 1.0 1.0	4,005 ^d	1.0 1.0 0.95 0.9	0.44 ^e 0.44 0.44 0.44	4,772 ^e	1.0 1.0 0.95 0.9	0.56 0.56 0.56 0.56	3,114 ^e	1.0 1.0 0.95 0.9	1.0 1.0 1.0

^aScenario I Rationale: No important 75-80 change since Ref. 18 is circa 1978. Relaxation of environmental control permits marginal increase in efficiency in 1985. Recycle increases slowly because of mature 1978 technology and infrastructure. Interest in increasing U.S. ore mining picks up slightly. Reimposition of strict environmental controls after 1990 temporarily slows efficiency improvements. Maximum recycling attained 1990.

Scenario III Rationale: See cold-rolled steel Scenario III (Table 11) for general tone. Recycling left up to industry which is satisfied to stay put. Reduced demand counters any need for import metal.

bMine: Ref. 14.

^cSmelting: Ref. 14.

dRefining and other: Ref. 14.

e_{Ref. 14}.

Table 20 Energy Estimate Factors for Zinc

Scenario/ Year ^a	Mining or Feedstock Energy (Btu/1b),	Ore or Material Fraction Mined or Extracted in U.S., a ₁	Processing Energy for Other Ores (Btu/1b),	Fraction of Other Ores Processed in U.S.,	Refining Energy (Btu/lb), B	Refining Effi- ciency Factor, β	Virgin Material Fraction, V	Scrap- Processing Energy (Btu/1b), D	Scrap- Processing Efficiency Factor, 0	Recycled Material Fraction, W	Semifab- rication Energy (Btu/1b), C	Semifab- rication Efficiency Factor,	Fraction of Semi- fabricated Material Produced in U.S., Z
I/1975 1980 1990 2000	4,000 ^b	0.42 ^c	5,000 ^b	0.55 ^d	25,000 ^b	1.0 1.0 0.85 0.80	0.94 ^e 0.94 0.85 0.83	15,000 ^b	1.0 1.0 0.85 0.80	0.06 0.06 0.15 0.17	15,000 ^b	1.0 1.0 0.85 0.80	0.5 0.5 0.55 0.6
III/1975 1980 1990 2000	4,000 ^b	0.42 ^c	5,000 ^b	0.55 ^d	25,000 ^b	1.0 1.0 0.9 0.9	0.94 ^e 0.94 0.92 0.9	15,000 ^b	1.0 1.0 0.9 0.9	0.06 0.06 0.08 0.1	15,000 ^b	1.0 1.0 0.9 0.9	0.5 0.5 0.5 0.5

aScenario I Rationale: Little and disparate data forces liberal engineering estimates. 23,950 is close to Ref. 8 unsupported estimate of 22,093 Btu/lb. No change 75-80 since Ref. 8 is 1980. Relaxation of strict environmental control causes efficiency improvement in 1985. Slight increase in efficiency in 1990 is counterbalanced by industry interest in becoming a product exporter. Efficiency improvements slowed 1990-2000 because of reimposition of strict environmental control. Further industry interest in becoming an exporter counterbalances and raises U.S. energy.

Scenario III Rationale: See cold-rolled steel Scenario III (Table 11) for general tone. Recycling not pushed. Industry left to its own devices. Reduced demand creates static import situation.

bEngineering estimate.

CZinc oxide from domestic, Ref. 5.

dproc. imp. ore, Ref. 5.

eRef. 5.

Table 21 Energy Estimate Factors for Nickel

Scenario/ Year ^a	Mining or Feedstock Energy (Btu/lb),	Ore or Material Fraction Mined or Extracted in U.S., a ₁	Processing Energy for Other Ores (Btu/1b), A ₂	Fraction of Other Ores Processed in U.S.,	Refining Energy (Btu/1b), B	Refining Effi- ciency Factor,	Virgin Material Fraction, V	Scrap- Processing Energy (Btu/1b), D	Scrap- Processing Efficiency Factor, 0	Recycled Material Fraction, W	Semifab- rication Energy (Btu/1b), C	Semifab- rication Efficiency Factor, \$\phi\$	Fraction of Semi- fabricated Material Produced in U.S., Z
I/1975 1980 1990 2000	15,734 ^b	0.06 ^c 0.06 0.06 0.06	11,702 ^d	0.53 ^c ,e 0.53 0.53 0.53	44,420	1.0 0.95 0.85 0.8	0.75 ^c 0.75 0.60 0.50	10,000 ^f	1.0 0.95 0.85 0.8	0.25 ^c 0.25 0.40 0.5	10,000 ^f	1.0 0.95 0.85 0.8	0.1 0.1 0.1 0.1
111/1975 1980 1990 2000	15,734 ^b	0.06 ^c 0.06 0.06	11,702 ^d	0.53 ^c ,e 0.53 0.53 0.53	44,420	1.0 0.95 0.90 0.9	0.75 ^c 0.75 0.73 0.72	10,000 ^f	1.0 0.95 0.9 0.9	0.25 ^c 0.25 0.27 0.28	10,000 ^f	1.0 0.95 0.9 0.9	0.1 0.1 0.085 0.085

^aScenario I Rationale: Export/import ratios do not change since U.S. is nickel poor. Efficiency improves due to relaxation of environmental controls to 1985 but slows later when strict controls are reimposed. Recycling technology gets most attention and improves markedly after 1985.

Scenario III Rationale: See cold-rolled steel Scenario III (Table 11) for general tone. Recycling receives no interest. Demand is low, moderating rise in metal imports.

bAllocated mining Btu, Ref. 17.

CDerived from Ref. 5.

dAllocated beneficiation Btu, Ref. 17.

 $^{
m e}$ If 47% import nickel concentrate, then U.S. must beneficiate 53% of all ore.

f_{Engineering} estimate.

Table 22 Energy Estimate Factors for Titanium

Scenario/ Year ^a	Mining or Feedstock Energy (Btu/1b),	Ore or Material Fraction Mined or Extracted in U.S., a ₁	Processing Energy for Other Ores (Btu/1b),	Fraction of Other Ores Processed in U.S.,	Refining Energy (Btu/lb), B	Refining Effi- ciency Factor, β	Virgin Material Fraction,	Scrap- Processing Energy (Btu/lb), D	Scrap- Processing Efficiency Factor, 0	Recycled Material Fraction, W	Semifab- rication Energy (Btu/1b), C	Semifab- rication Efficiency Factor,	Fraction of Semi- fabricated Material Produced in U.S., Z
1/1975 1980 1990 2000	5,880 ^b	0.0°	2-0	-	179,260	1.0 0.95 0.85 0.8	1.0 1.0 0.95 0.9	10,000 ^d	1.0 0.95 0.85 0.8	0.0 0.0 0.05 0.1	10,000 ^d	1.0 0.95 0.85 0.8	1.0 1.0 1.0
111/1975 1980 1990 2000	5,880 ^b	0.0°	-		179,260	1.0 0.95 0.95 0.9	1.0 1.0 1.0 0.98	10,000 ^d	1.0 0.95 0.95 0.9	0.0 0.0 0.0 0.0	10,000 ^d	1.0 0.95 0.95 0.9	1.0 1.0 0.9 0.9

^aScenario I Rationale: 100% ore import thru time. Efficiency improves due to relaxation of environmental controls and then slows as strict controls are reimposed. No recycling technology until 1990 and then begins slow increase.

Scenario III Rationale: See cold-rolled steel Scenario III (Table 11) for general tone. Technology advance for this difficult metal slow --demand down. Some imports. Essentially no recycling.

bAllocated mining Btu, Ref. 17.

c10% import, Refs. 17, 21.

dEngineering estimate. Use in zinc-chloride battery not clear.

Table 23 Energy Estimate Factors for Cobalt

Scenario/ Year ^a	Mining or Feedstock Energy (Btu/1b),	Ore or Material Fraction Mined or Extracted in U.S., α_1	Processing Energy for Other Ores (Btu/lb),	Fraction of Other Ores Processed in U.S., a2	Refining Energy (Btu/1b), B	Refining Effi- ciency Factor, β	Virgin Material Fraction, V	Scrap- Processing Energy (Btu/lb), D	Scrap- Processing Efficiency Factor, 0	Recycled Material Fraction, W	Semifab- rication Energy (Btu/1b), C	Semifab- rication Efficiency Factor, ¢	Fraction of Semi- fabricated Material Produced in U.S., Z
I/1975 1980 1990 2000	27,250 ^b	0.0°	0.0	0.0	30,500 ^b	1.0 0.95 0.85 0.80	1.0 1.0 1.0	5,200 ^b	1.0 1.0 1.0	0.0 ^d 0.0 0.0 0.0	0.0 ^e	1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0
111/1975 1980 1990 2000	27,250 ^b	0.0°	0.0	0.0	30,500 ^b	1.0 0.95 0.9 0.9	1.0 1.0 1.0	5,200 ^b	1.0 1.0 1.0	0.0 ^d 0.0 0.0 0.0	0.0 ^e	1.0 1.0 1.0	1.0 1.0 1.0 1.0

^aScenario I Rationale: Efficiency only possible improvement. All ore 100% imported. No recycling technology developed. Initial efficiency improvement due to relaxation of environmental control. Improvement slows in later years due to reimposition of strict controls.

Scenario III Rationale: See cold-rolled steel Scenario III (Table 11) for general tone.

bRef. 5 assumes cobalt and copper are similar.

c100% ore imports.

dNo known recycling technology.

eUse of elemental material in battery assumed.

Table 24 Energy Estimate Factors for Rubber

	A ₂	α ₂	(Btu/1b), B	Factor, β	Fraction, V	(Btu/1b), D	Efficiency Factor, θ	Material Fraction, W	Energy (Btu/1b), C	Efficiency Factor, \$\phi\$	Produced in U.S., Z
0.83 ^c	0.0	0.0	5,350	1.0	0.8 ^d	13,295 ^e	1.0	0.2d	0.0 ^f	1.0	1.0g
0.78				0.95	0.75		0.95	0.25		1.0	1.0
0.84											1.0
0.87				0.8	0.6		0.8	0.4		1.0	1.0
0.000		0.0	E 250	1.0	o od	13 205e	1.0	0.2d	0.0f	1.0	1.0
	0.0	0.0	5,330			13,233				1.0	1.0
											0.8
										1.0	0.8
		0.84 0.87 0.83 ^c 0.0 0.79 0.82	0.84 0.87 0.83 ^c 0.0 0.0 0.79 0.82	0.84 0.87 0.83 ^c 0.0 0.0 5,350 0.79 0.82	0.84 0.87 0.83 0.83 0.85 0.8 0.80 0.79 0.95 0.95 0.9	0.84 0.87 0.83 0.65 0.83 0.65 0.8 0.65 0.8 0.65 0.8 0.65 0.9 0.95 0.75 0.82 0.9 0.72	0.84 0.87 0.83 0.65 0.83 0.6 0.83 0.6 0.84 13,295 ^e 0.79 0.95 0.75 0.82 0.9 0.72	0.84 0.85 0.65 0.85 0.87 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	0.84 0.85 0.65 0.85 0.35 0.87 0.8 0.8 0.6 0.8 0.4 0.8 0.8 0.4 0.8 0.8 0.4 0.8 0.8 0.8 0.4 0.9 0.7 0.7 0.9 0.2 0.9 0.2 0.9 0.2 0.2 0.9 0.2 0.2 0.9 0.2 0.2 0.9 0.2 0.2 0.9 0.2 0.2 0.9 0.2 0.2 0.9 0.2 0.2 0.2 0.9 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.84 0.85 0.85 0.85 0.35 0.87 0.8 0.8 0.8 0.8 0.4 0.8 0.4 0.8 0.4 0.8 0.6 0.8 0.4 0.4 0.8 0.6 0.8 0.4 0.4 0.8 0.6 0.8 0.4 0.4 0.8 0.7 0.9 0.9 0.25 0.82 0.9 0.72 0.9 0.28	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

^aScenario I Rationale: Recycling increases due to increasing feedstock energy cost. Manufacturing efficiency first improves due to relaxation of environmental controls then slows as strict controls are reimposed. Auto manufacturing industry will use U.S.-produced tires on all new equipment.

Scenario III Rationale: See cold-rolled steel Scenario III (Table 11) for general tone. Interest in recycling ebbs but high feedstock cost forces industry to recycle at somewhat less than optimum rate. Some auto manufacturers will buy foreign to avoid high U.S. cost.

bEstimated fuel content: 66,475 Btu/lb estimated total less 5,350 Btu/lb estimated by Ref. 3 as fabrication energy for tires.

CReflects % U.S. petroleum-based feedstock from TAPCUT. (Ref. 22).

dEngineering estimate.

eRef. 10 estimates 20% of virgin energy for recycled product.

fAssumes all U.S.-produced vehicles will have U.S.-produced tires.

gB and D include semifabrication to product.

Table 25 Material Energy Content by Material Production Stage (Btu/lb)

Material	Scenario/ Year	Primary Material to Semi- fabrication (E _p)	Recycled Material to Semi- fabrication (E _R)	Semi- fabrication from Primary Material (E _{MP})	Semi- fabrication from Recycled Material (E _{MR})	Total (E _T)
Cold-rolled	1/1975	13,290	1,960	4,140	1,610	21,000
Steel	1980	11,553	1,666	3,726	1,449	18,393
	1990	7,935	1,904	2,657	1,369	13,865
	2000	7,489	2,016	2,576	1,449	13,530
	III/1975	13,290	1,960	4,140	1,610	21,000
	1980	11,553	1,764	3,726	1,449	18,492
	1990	11,048	1,496	3,687	1,229	17,460
	2000	10,911	1,071	3,519	880	16,381
Stainless	1/1975	24,190	1,200	6,588	1,163	33,141
steel	1980	20,864	1,020	5,929	1,046	28,859
	1990	16,042	1,088	5,146	1,054	23,330
	2000	15,232	1,216	5,022	1,178	22,648
	III/1975	24,190	1,200	6,588	1 162	22 141
	1980	21,972	1,080	5,929	1,163	33,141
	1990	19,551	608	5,301	589	30,027
	2000	17,449	540	4,708	523	26,089 23,220
Cast iron	I/1975	7,204	2,184	0	0	0.200
	1980	6,810	2,031	0	0	9,388
	1990	5,728	2,201	0	0	8,841 7,929
	2000	5,405	2,246	Ö	Ö	7,651
	III/1975	7,204	2,184	0	0	9,388
	1980	6,923	2,075	0	0	
	1990	6,490	1,667	0	0	8,998
	2000	6,273	1,193	Ö	0	8,157 7,466
Nodular	I/1975	9,886	3,227	•		
iron	1980	9,305	3,001	0	0	13,113
	1990	7,769	3,252	0	0	12,306
	2000	7,312	3,319	0	0	11,021 10,631
	III/1975	9,886	3,227	_		
	1980	9,471	3,066	0	0	13,113
	1990	8,879	2,463	0	0	12,537
	2000	8,553	1,763	0	0	11,342
Malleable	I/1975	10,948	3,640			
Iron	1980	10,292	3,385	0	0	14,588
	1990	8,577	3,669	0	0	13,677
	2000	8,067	3,744	0	0	12,246
	III/1975	10,948	3,640			
	1980	10,480	3,458	0	0	14,588
	1990	9,825		0	0	13,938
	2000	9,455	2,779 1,989	0	0	12,604
		,	1,707	0	0	11,444

Table 25 (Cont'd)

Material	Scenario/ Year	Primary Material to Semi- fabrication (E _p)	Recycled Material to Semi- fabrication (E _R)	Semi- fabrication from Primary Material (E _{MP})	Semi- fabrication from Recycled Material (E _{MR})	Total (E _T)
Rolled/	1/1975	37,527	447	11,610	1,290	50,874
wire	1980	35,875	402	10,449	1,161	47,887
copper	1990	32,117	636	9,524	1,951	44,228
EESEL CO	2000	33,041	790	9,120	2,280	45,231
	III/1975	37,527	447	11,610	1,290	50,874
	1980	35,924	420	10,901	1,211	48,456
	1990	29,565	351	9,113	1,012	40,041
	2000	29,565	351	9,113	1,012	40,041
Polled/	1/1975	80,215	2,000	15,000	5,000	102,215
Rolled/ drawn	1980	52,595	3,496	10,260	8,740	75,091
	1990	42,165	3,536	8,160	8,840	62,701
aluminum	2000	37,750	3,944	7,140	9,860	58,694
					F 000	102,215
	III/1975	80,215	2,000	15,000	5,000	
	1980	74,867	2,400	14,000	6,000 6,650	97,267 84,969
	1990 2000	63,309 60,203	2,660 2,528	12,350 11,700	6,300	80,731
	2000	00,203	2,320	11,700		
Cast	1/1975	0	8,000	0	2,000 1,900	9,500
aluminum	1980	0	7,600	0	1,700	8,500
	1990 2000	0	6,800 6,800	0	1,700	8,500
	2000					
	III/1975	0	8,000	0	2,000	10,000
	1980	0	8,000	0	2,000	10,000
	1990	0	7,600	0	1,900	9,500
	2000	0	7,600	0	1,900	9,500
Battery	1/1975	5,795	2,672	1,370	1,744	11,581
lead	1980	5,795	2,672	1,370	1,744	11,581
80.08	1990	5,063	2,434	1,059	1,588	10,144
	2000	5,063	2,434	1,059	1,588	10,144
	III/1975	5,795	2,672	1,370	1,744	11,581
	1980	5,795	2,672	1,370	1,744	11,581
	1990	5,707	2,539	1,302	1,657	11,205
	2000	5,619	2,405	1,233	1,569	10,826
71	1/1975	13,832	450	15,000	900	30,182
Zinc	1980	13,832	450	15,000	900	30,182
	1990	12,005	1,052	11,922	2,104	27,083
	2000	12,166	1,224	12,000	2,040	27,430
	TTT /1075	12 022	450	15,000	900	30,182
	111/1975	13,832	450	15,000	900	30,182
	1980	13,832	542	12,240	1,080	26,250
	1990	12,388	675	12,150	1,350	26,294
	2000	12,119	0/3	12,150	2,000	

Table 25 (Cont'd)

Material	Scenario/ Year	Primary Material to Semi- fabrication (E _p)	Recycled Material to Semi- fabrication (E _R)	Semi- fabrication from Primary Material (E _{MP})	Semi- fabrication from Recycled Material (E _{MR})	Total (E _T)
						10.067
Nickel	1/1975	3,867	2,500	10,000	2,500 2,375	18,867
MICKEL	1980	3,701	2,375	9,500		17,994
	1990	2,694	3,400	8,500	3,400	
	2000	2,134	4,000	8,000	4,000	18,134
		2 267	2,500	10,000	2,500	18,867
	III/1975	3,867		9,500	2,375	17,951
	1980	3,701	2,375	9,000	2,430	16,249
	1990	2,632	2,187		2,520	16,384
	2000	2,596	2,268	9,000	2,320	10,50
	1/1975	179,260	0	10,000	0	189,260
Titanium	1980	170,297	0	9,500	0	179,797
	1990	144,752	425	8,075	425	153,677
	2000	129,067	800	7,200	800	137,867
			0	10,000	0	189,260
	III/1975	179,260		9,500	Ö	179,797
	1980	170,297	0		0	161,817
	1990	153,267	0	8,550	162	150,559
	2000	142,297	162	7,938	102	150,55
Cobalt	1/1975	30,500	0	0	0	30,500
CODATE	1980	29,000	0	0	0	29,000
	1990	25,950	0	0	0	25,950
	2000	24,400	0	0	- 0	24,400
	TTT /1075	30,500	0	0	0	30,500
	111/1975	28,980	0	0	Ö	28,980
	1980		0	0	0	26,340
	1990	26,340	0	0	0	26,34
	2000	26,340	0	U	0	20,540
Tire rubber	I/1975	44,867	2,659	0	0	47,520
	1980	39,570	3,158	0	0	42,72
	1990	36,330	3,955	0	0	40,285
	2000	34,475	4,254	0	0	38,729
	III/1975	44,867	2,659	0	0	47,520
	1980	40,028	3,158	0	0	43,18
	1990	31,644	2,680	0	Ö	34,32
	2000	31,792	2,872	0	0	34,664

Table 26 Production Energy of Materials for which Little is Known about Energy Content Breakdown, Little or No Recycling is Possible, or Mostly U.S. Production is Estimated (Btu/lb)

	-	Scer	nario I	2020		19 38	Scenar	io III	No. of Street, or other Prince, and the Prince	
Materiala	1975	1980	1990	2000	Rationale	1975	1980	1990	2000	Rationale
Plasticsb	53,880	49,680	48,240	48,120	c	53,880	51,540	50,820	51,000	d
Glasse	10,000	9,800	9,300	9,000	10% Imp.	10,000	9,880	9,630	9,500	5% Imp.
Lithium ^f	197,800	197,800	178,000	168,150	15% Imp. begins 1985	197,800	197,800	189,890	181,970	8% Imp. begins 198
Lithium sulfide in batteries	63,000	63,000	56,700	53,550	15% Imp. begins 1985	63,000	63,000	60,480	57,960	8% Imp. begins 1985
Lithium chloride in batteries ^f	36,400	36,400	32,760	30,940	15% Imp. begins 1985	36,400	36,400	34,940	33,490	8% Imp. begins 198
Potassium hydroxide ^g	4,680	4,590	4,330	4,210	9% Imp.	4,680	4,610	4,470	4,400	6% Imp.
Siliconh	49,300	46,850	41,900	39,500	20% Imp.	49,300	48,070	45,600	44,370	10% Imp.
Ceramics ¹	40,000	40,000	40,000	40,000	No change	40,000	40,000	40,000	40,000	No change
Paint	7,000	7,000	6,500	6,500	7% Imp. begins 1980	7,000	7,000	6,810	6,720	4% Imp. begins 1980
Sound deadeners	7,000	7,000	6,500	6,500	7% Imp. begins 1980	7,000	7,000	6,810	6,720	4% Imp. begins 1980
Sulfurk	443	443	443	443	No change	443	443	443	443	No change
Sodium ¹	46,000	46,000	42,000	41,400	9% Imp. begins 1980	46,000	46,000	44,160	43,240	6% Imp. begins 1980
Graphite ^m	1,000	1,000	1,000	1,000	No change	1,000	1,000	1,000	1,000	No change
Zinc chloride ⁿ	18,600	18,600	18,600	18,600	No. change	18,600	18,600	18,600	18,600	No change
Sulfuric acido	20	20	20	20	No change	20	20	20	20	No change
Vehicle fab.	6,885	6,600	6,300	6,200	10% Imp.	6,885	6,780	6,580	6,470	6% Imp.

aNo data were available for molybdenum or boron nitride.

¹Uses high temperature porcelain as surrogate for high temperature ceramics. No efficiency improvement taken to reflect late-year new high-temperature technology.

 ${}^{j}\mathrm{Established}$ technology. Most efficiency improvements from temporary relaxation of environmental controls.

 k Reaction mostly exothermic. Negligible benefits from efficiency improvement.

¹New technology for batteries. Little chance for efficiency improvement.

Mostly feedstock energy. 90% imported (Ref. 21); U.S. process energy unknown. Assumed 1000 Btu/1b.

ⁿTenuous engineering estimate for 1975 energy does not warrant efficiency projections.

^OBtu impact small; scenario breakdown meaningless.

b36,000 Btu/1b feedstock energy per Ref. 8. Efficiency improvement applied to process energy.

^c30% efficiency improvement by 2000 in process energy (24,000 Btu/lb 1975) adjusted by % domestic feedstock -- see rubber.

d15% efficiency improvement by 2000 in process energy (24,000 Btu/lb 1975) adjusted by % domestic feedstock -- see rubber.

^eEstablished technology - minimal efficiency improvement.

fLithium energy details proprietary (Ref. 17). New technology, little efficiency improvement.

gEstablished technology - little efficiency improvement.

h1975 average of Refs. 5 and 17. Little known about processing energy.

Table 27 Fuel Distributions by Material, Scenario, and Year $(%)^a$

		Prima	ary and	Recycle	Material t	hrough Re	fining	Se	mifabr	icationb	
Material	Scenario/ Year	Coal	Petro- Coal leum		Purchased Elec- tricity	Hydro- elec- tricity	Other	Coal	Gas	Purchased Elec- tricity	Rationale
Cold-Rolled	1/1975	69.2	5.9	19.5	5.5			0	0	100	
Steel/Stainless	1980	69.2	5.9	19.5	5.5			0	0	100	Assumes coal/gas distribution for refined semi-
Steel/Iron	1990	75.2	2.9	16.4	5.5			0	0		fabrication processing is same as primary dis-
	1000	79.2	1.9	12.4	6.5			ő	0	100	tribution (all materials). Coal use increases rapidly during 1980-85 as environmental restrictions ease. Continues to increase as control technology advances. Petroleum reaches lower limit in '85 but natural gas use continues to decline. Purchased electricity is mainly plant and machine tool energy. Slight increase in year 2000. New U.S. discoveries of natural gas
											support moderate decline.
	III/1975	69.2	5.9	19.5	5.5	20 2 186	-	0	0	100	Coal use increases slowly because of limited
	1980	69.2	5.9	19.5	5.5		-	0	0	100	investment resource in new mining technology.
	1990	72.0	4.7	17.8	5.5	-	-	0	0	100	Oil reduced some because of high cost. Natural
	1000	75.0	4.5	15.0	5.5	14.200 16.500 10.500 10.500		0	0	100	gas imports rise but percentage reduced slowly. Most changes occur in purchased electricity — little effort made to convert operations from 1975 percentage since few new plants are built.
Scrap to iron	1/1975	30.2	2.1	36.4	21.5	30-200	9.8	0	0	0°	C 11 - 11 1
	1980	30.2	2.1	36.4	21.5	_	9.8	0	0	0	See cold-rolled steel for general tone. Con-
	1990	35.0	2.0	31.0	23.0	1992	9.0	0	0	0	version to electric furnaces increases as new
	2000	39.0	2.0	24.0	26.0	-	9.0	0	0	0	plants are constructed. Oil at a minimum. Gas- fired furnaces converted to fluidized-bed coal.
	III/1975	30.2	2.1	36.4	21.5	100	9.8	0	0	0	See cold-rolled steel for general tone. Little
	1980	30.2	2.1	36.4	21.5		9.8	0	0	0	happens because of investment capital lack.
	1990	32.0	2.0	34.7	21.5	-	9.8	0	0	0	Changes to coal made where easily accomplished
	2000	34.0	2.0	32.2	22.0	100_110	9.8	0	0	0	to reduce use of petroleum/natural gas. Little pressure from recycling groups because of low interest and fragmented approach.
Scrap to steel	1/1975	19.8	5.4	56.0	19.1	_ 8	eri <u>e</u> no po	0	0	100	See cold-rolled steel and scrap to iron.
	1980	19.8	5.1	56.0	19.1	-	-	0	0	100	The strain to th
	1990 2000	25.0 29.0	3.0	50.0	22.0			0	0	100	
	III/1975	19.8	5.4	56.0	19.1	_	_	0	0	100	See cold-rolled and a
	1980	19.8	5.4	56.0	19.1		124	0	0	100	See cold-rolled steel and scrap to iron.
	1990	21.5	4.5	55.0	19.1	_	_	0	0	100	
	2000	24.5	4.0	52.0	19.1	A COLUMN	TELL	0	0		
	2000	-4.5	4.0	32.0	17.1			U	0	100	

Table 27 (Cont'd)

		Prima	ry and I	Recycle	Material t	hrough Re	fining	Se	mifabr	icationb	
Material	Scenario/ Year	Coal	Petro- leum	Gas	Purchased Elec- tricity	Hydro- elec- tricity	Other	Coal	Gas	Purchased Elec- tricity	Rationale
Aluminum	1/1975	0.5	3.5	38.4	36.9	20.6	-	10.0	40.0	50.0	See cold-rolled steel for general tone. Hydro-
	1980	0.75	3.5	38.2	36.9	20.6	-	10.0	40.0	50.0	electricity has a fixed Btu output, therefore,
	1990	2.0	3.0	37.5	39.5	18.0	1-1	20.0	30.0	50.0	its percentage drops as volume of aluminum
	2000	4.0	2.5	36.0	42.5	15.0	1-0	25.0	25.0	50.0	required is reduced. Most natural gas is used
											for alumina production and its use decreases
											slowly as fluidized coal technology takes hold.
	111/1975	0.5	3.5	38.4	36.9	20.6	870	10.0	40.0	50.0	See cold-rolled steel for general tone. Hydro-
	1980	0.7	3.5	38.3	36.9	20.6	350	11.0	39.0	50.0	electricity still has a fixed Btu output but
	1990	1.3	2.7	38.5	39.5	18.0	7-	12.0	38.0	50.0	percentage drop is not as steep because vehicle
	2000	1.6	2.5	38.4	40.5	17.0	17	15.0	35.0	50.0	production may be less. Lack of capital invest- ment funds places even higher load on natural
											gas.
Scrap to	1/1975	7.8	8.8	64.6	15.6	2	5.0	0	0	100 ^d	See cold-rolled steel for general tone. Most
aluminum	1980	8.0	8.5	62.5	16.0	-	5.0	0	0	100	effort placed in converting gas-fired furnaces
	1990	12.0	6.0	59.0	18.0	-	5.0	0	0	100	to fluidized bed and electric furnaces.
	2000	14.0	5.0	54.0	22.0	-	5.0	0	0	100	
	111/1975	7.8	8.8	64.6	15.6	-	5.0	0	0	100	See cold-rolled steel for general tone. Little
	1980	7.8	8.5	63.1	15.6	-	5.0	0	0	100	capital available for conversion to electric or
	1990	9.5	7.5	62.0	16.0	100 ± 74	5.0	0	0	100	fluidized-bed furnace.
	2000	10.0	7.0	62.0	16.0		5.0	0	0	100	
Copper -	1/1975	54.6	22.6	33-	22.8	-	-	10.0	40.0	50.0	See cold-rolled steel for general tone. Moder-
rolled/wire	1980	56.0	20.2	33-	23.8	-	75-	10.0	40.0	50.0	ate effort devoted to replacing expensive oil
	1990	60.0	13.2	53-6	26.8	-	38-	20.0	30.0	50.0	with coal.
	2000	63.0	9.0	-	28.0	-	-	25.0	25.0	50.0	
	III/1975	54.6	22.6	10-	22.8	1 - T- 11	3-	10.0	40.0	50.0	Marginal replacement of oil due to limited
	1980	54.6	22.6	33-0	22.8	1 1 m	35	11.0	39.0	50.0	investment capital and low general interest.
	1990	56.0	20.2	350	23.8	-		12.0	38.0	50.0	Selected and an Action and Action
	2000	57.0	18.2	-	24.8	-	-	15.0	35.0	50.0	
Scrap to	1/1975	3.5	18.7	52.9	16.1	421-123	8.8	10.0	40.0	50.0	See cold-rolled steel for general tone. Consid-
copper wire	1980	3.8	18.4	52.9	16.1	-	8.8	10.0	40.0	50.0	erable drive to shift away from expensive petro-
	1990	7.0	7.6	45.6	31.0	12-50-	8.8	20.0	30.0	50.0	leum and natural gas especially since pur-
	2000	10.0	4.6	40.0	36.6		8.8	25.0	25.0	50.0	chased electricity may become cheaper with nuclear power coming on line.
	/										
	111/1975	3.5	18.7	52.9	16.1	-	8.8	10.0		50.0	See cold-rolled steel for general tone. Little
	1980 1990	3.8	18.4	52.9	16.1		8.8		39.0	50.0	interest and capital funds. Only slight relief
	2000	5.0 6.0	17.2	52.9	16.1		8.8	12.0	38.0	50.0	obtainable from high petroleum costs by small
	2000	0.0	10.2	52.9	10.1	-7 6 3365	8.8	15.0	35.0	50.0	shift to coal.

Table 27 (Cont'd)

		Prima	ry and I	Recycle	Material t	hrough Re	fining	Ser	nifabri	cationb	
Material	Scenario/ Year	Coal	Petro- leum	Gas	Purchased Elec- tricity	Hydro- elec- tricity	Other	Coal	Gas	Purchased Elec- tricity	Rationale
Virgin battery	1/1975	29.0	3.3	22.9	35.7	_	9.1	0	0	100 ^e	See cold-rolled steel for general tone. Emphasis
lead	1980	30.0	2.3	22.9	35.7	-	9.1	0	0	100	placed on shift to coal and purchased electric-
	1990	35.0	1.0	18.0	37.0	-	9.1	0	0	100	ity.
	2000	38.0	1.0	12.0	40.0	-	9.1	0	0	100	
	111/1975	29.0	3.3	22.9	35.7	-	9.1	0	0	100	See cold-rolled steel for general tone. Little
	1980	29.0	3.3	22.9	35.7	-	9.1	0	0	100	shift to coal and purchased electricity to obtain
	1990	30.0	2.3	22.9	35.7	-	9.1	0	0	100	some relief from high nonrenewable fuel costs,
	2000	31.0	1.3	21.9	36.7	-	9.1	0	0	100	but not enough investment capital to make much a dent.
	1/1975	29.2	3.0	28.4	16.4		22.9	0	0	100 ^e	See cold-rolled steel for general tone and
Secondary lead	1980	30.2	2.0	28.4	16.4	_	22.9	0	0	100	virgin battery lead, Scenario I.
lead	1990	35.0	1.0	21.4	19.7	_	22.9	0	0	100	
	2000	38.0	1.0	17.0	21.1	-	22.9	0	0	100	
	III/1975	29.2	3.0	28.4	16.4	-	22.9	0	0	100	See cold-rolled steel for general tone and
	1980	29.2	3.0	28.4	16.4	-	22.9	0	0	100	virgin lead, Scenario III.
	1990	30.2	2.1	28.4	16.4	-	22.9	0	0	100	
	2000	31.2	1.1	27.4	17.4	-	22.9	0	0	100	
Zinc	1/1975	50.0	0.3	48.9	-		1.0	10.0	40.0	50.0	See cold-rolled steel for general tone. Zinc
LINC	1980	50.0	0.3	48.9	77-7	-	1.0	10.0	40.0	50.0	data are poor. Possibly some shift to pur-
	1990	50.0	0.3	45.0	3.7	-	1.0	20.0	30.0	50.0	chased electricity but questionable.
	2000	50.0	0.3	42.0	6.7	-	1.0	25.0	25.0	50.0	
	111/1975	50.0	0.3	48.9	-	-	1.0	10.0	40.0	50.0	See cold-rolled steel for general tone. No
	1980	50.0	0.3	48.9		-	1.0	11.0	39.0	50.0	change since oil is small and capital funds for
	1990	50.0	0.3	48.9	-	10-0	1.0	12.0	38.0	50.0	gas to electricity conversion is minimal.
	2000	50.0	0.3	48.9	-	10-0	1.0	15.0	35.0	50.0	
Electrolytic	1/1975	22.0	6.6	27.0	44.4	-	-	10.0	40.0	50.0	See cold-rolled steel for general tone. Refer-
nickel	1980	22.0	6.6	27.0	44.4	-	-	10.0	40.0	50.0	ence data said to have ±50% accuracy. Most
	1990	26.0	6.6	22.4	45.0	-	-	20.0	30.0	50.0	petroleum for transportation and coke. Coal and
	2000	28.0	6.6	16.4	49.0	-	-	25.0	25.0	50.0	purchased electricity may be substitutable for natural gas.
	111/1975	22.0	6.6	27.0	44.4	-	_	10.0	40.0	50.0	See cold-rolled steel for general tone. Some
	1980	22.0	6.6	27.0	44.4	-	-		39.0	50.0	shift to coal to avoid high natural gas cost.
	1980	24.0	6.6	25.0	44.4	-	-	12.0	38.0	50.0	Lack of investment capital results in little
	1990	24.0	0.0	23.0				15.0		50.0	increase in electricity generating capacity.

Table 27 (Cont'd)

		Prima	ry and F	ecycle	Material t	hrough Re	fining	Se	mifabr	icationb	
Material	Scenario/ Year	Coal	Petro- leum	Gas	Purchased Elec- tricity	Hydro- elec- tricity	Other	Coal	Gas	Purchased Elec- tricity	Rationale
Recycled	1/1975	20.0	5.0	60.0	15.0	-	-	10.0	40.0	50.0	See cold-rolled steel for general tone. No
nickel	1980	20.0	5.0	60.0	15.0	-	-	10.0	40.0	50.0	recycling data available gross engineering
	1990	28.0	5.0	52.0	15.0	-	-	20.0	30.0	50.0	estimate appears here. Petroleum used for trans-
	2000	30.0	5.0	49.0	16.0	-	-	25.0	25.0	50.0	portation, gas and coal for furnace melting of
											scrap, and electricity for semifabrication
											processing. Scenario effort centered on reducing
											natural gas.
	III/1975	20.0	5.0	60.0	15.0		_	10.0	40.0	50.0	See cold-rolled steel for general tone. No
	1980	20.0	5.0	60.0	15.0			11.0	39.0	50.0	change because of grossness of estimate and
	1990	20.0	5.0	60.0	15.0	76 May 1889		12.0	38.0	50.0	limited funds in Scenario III.
	2000	20.0	5.0	60.0	15.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_	15.0	35.0	50.0	Timited funds in Scenario III.
	2000	20.0	3.0	00.0	13.0			13.0	33.0		
Glass	1/1975	2.0	17.5	68.0	10.0	-	2.5	-	-	_f	See cold-rolled steel for general tone. Pro-
	1980	2.0	16.5	68.0	11.0	-	2.5	-	-		jection assumes float glass process where coal
	1990	5.0	13.5	64.0	15.0	-	2.5	-	-	- 7 79	and electricity can be substituted for gas flame
	2000	10.0	8.5	54.0	25.0	-	2.5	-	-	-77	in maintaining molten metal pool and pot. 1.3%
											not accounted for by reference.
	111/1975	2.0	17.5	68.0	10.0	-	2.5	-	-	-	See cold-rolled steel for general tone. Lack of
	1980	2.0	17.5	68.0	10.0	Transfer of the	2.5	100	-33	22	investment funds results in little relief from
	1990 2000	2.5	17.0	66.5	11.5		2.5				petroleum and natural gas costs.
	2000	3.0	10.5	00.5	11.5		2.3		354.3		
Sound	1/1975	0.8	23.8	17.4	15.9		42.2	-	-	- 2000 - 1	See cold-rolled steel for general tone. Assumed
deadeners	1980	1.8	22.8	17.4	15.9	400 400	42.2	-	-		similar to pulp and paper industry. "Other" is
deadeners	1990	9.8	14.8	12.4	17.9	-	45.1	-	-	-	process-derived wood and bark chips. In addition
	2000	13.8	10.8	10.0	19.0	193-3	46.4	-	-	0 -	to coal and electricity emphasis, some attention
											will be directed toward making the industry
											energy-self-sufficient.
				0000	1 110 h 2 1						
	111/1975	0.8	23.8	17.4	15.9	-	42.2	-	-	-	See cold-rolled steel for general tone. Some
	1980	0.8	23.8	17.4	15.9	-	42.2	-			relief from high petroleum and gas costs but
	1990	2.8	21.8	15.4	15.9	CENCHEN	44.2	COST	628	ALEST STATE OF THE PARTY OF THE	little capital or incentive to make major process
	2000	3.8	20.8	14.4	15.9	9780	45.2	1 1100000	1030	T OTHER	changes.

(Cont'd)

Table 27

Table 27 (Cont'd)

		Prima	ry and R	ecycle	Material t	hrough Re	fining	Se	mifabri	cationb	
	Scenario/	00	Petro-	103	Purchased Elec-	Hydro-				Purchased Elec-	1 2 - 2 1 2 2
Material	Year	Coal	leum	Gas	tricity	tricity	Other	Coal	Gas	tricity	Rationale
Vehicle	1/1975	20.4	6.3	52.9	20.4	-		NA ^h	NA	NA	See cold-rolled steel for general tone. Main
fabrication	1980	22.4	6.3	50.9	20.4	-	-	NA	NA	NA	shift to coal for space heating and any in-plant
abiicacion	1990	34.4	5.3	39.9	20.4	-		NA	NA	NA	electricity generation. Purchased electricity
	2000	40.4	4.3	34.9	20.4		-	NA	NA	NA	used for machine tool and line operation. Some petroleum and gas required for material preheating.
	III/1975	20.4	6.3	52.9	20.4	_	202	NA	NA	NA	See cold-rolled steel for general tone. Shift to
	1980	20.4	6.3	52.9	20.4	-		NA	NA	NA	coal markedly reduced because of lack of conver-
	1990	21.4	6.3	51.9	20.4	_	-	NA	NA	NA	sion capital and potentially large imports of
	2000	25.4	6.3	47.9	20.4	-	-	NA	NA	NA	foreign vehicles.
Titanium	A11 A11	Neg.	7.4	2.4	66.5		24.0	20.0	30.0	50.0	Sparse data. Since petroleum and natural gas percentages are small and "other" is large and undefined, a scenario breakdown is not warranted. No recycling data.
Sodium	A11 A11	9.6	0.4	*-	89.0	-	1.0	NA	NA	NA	Little improvement can be projected since most energy is already coal and purchased electricity.
Plastics	A11 A11	Neg.	26.4	66.3	7.2	-	72	-	-	_f	Little change possible most petroleum and natural gas is feedstock energy.
Virgin rubber	A11 A11	0.1	47.8	53.9	9.7		-	-	-	_f	Little change possible most petroleum and natural gas is feedstock energy. See tires also.
Frasch sulfuric acid	A11 A11	-	-	94.4	0.5	-	5.1	NA	NA	NA	Little change possible if Frasch process used. Natural gas apparently a hydrogen source.
Recovered sulfur	A11 A11	-	-	-	35 -	-	-	NA	NA	NA	Exothermic reaction.
Paints	A11 A11	22.6	17.8	38.7	20.9	-	8	- June	-	_f	Too little known about process to make reasonable projection.
Carbon graphite	A11 A11	-	19.6	39.6	40.6	8-	3	-	-	_f	Too little known about process to make reasonable projection.

^aFuel distribution percentages may not add to 100% because of rounding.

bNo data available -- engineering estimate.

CSemifabrication as cast.

dInvestment casting - mold heating.

eMold heating and material processing.

fAssumed included in basic distribution.

gIncluded in basic distribution.

h_{NA} = Not applicable.

Table 28 TAPCUT Fuel Distributions (% of National Totals)

			Scen	ario I	Scena	rio III
Energy and Sources	1975	1980	1990	2000	1990	2000
Electricity Generation Only		1				
Coal (direct-fired)	46	46	55	43	54	56
Nuclear	12	12	23	36	19	25
0i1	17	17	3	3	4	3
Natural gas	14	14	4	2	10	1
New fuels						
Coal gas	-	_	2	5		_ "
Coal liquids		Y - 3	1	_	_	_
0il shale				<u> </u>	2 - E	_
Other						
Hydroelectricity	11	11	8	7	11	10
Geothermal	_	_	_	1		1
Wind	_	_0	2	2	2	4
Solar	-	-	2	2	-	-
U.S. Energy Sources						
Electricity (incl. losses)	30	30	30.2	30.2	30.2	30.3
Other	70	70	69.8	69.8	69.8	69.7
All Fuel Uses						
Imported oil	18	22	11	3	18	15
Domestic oil	27	25	18	20	24	21
Coal (direct-fired)	19	20	26	22	23	
Nuclear	3	3.5	7	11		30
Renewables	4	4	7	10	6	7
Other	0.4	0.5		10	6	8
Natural gas	28	25	24	21	-	-
Coal liquids	-	-	2	3	23	19
Coal gas	-		1		0	0
Oil shale	4 -1250	100	4	3 7	0	0
			ara e		0	0

Table 29 Energy per Pound of Material by Energy Type, Material, Year, and Scenario (Btu/lb material)

	Section 1		En	ergy Type		
Material and Year	Scenario	Coal	Petroleum	Natural Gas	Purchased Elec- tricity	Other Total
Cold-Rolled Steel	2,187	10010	s\$s.	546.5		Nodular from
1980	III	8,301 8,321	772 777	3,186 3,241	6,165 6,183	- 18,424 - 18,522
1990	III	5,852 7,919	571 733	2,614 2,992	4,826 5,809	- 13,863 - 17,453
2000	III	5,567 7,741	551 702	2,589 2,727	4,822 5,204	- 13,529 - 16,374
Stainless Steel						
1980	III	14,598 15,375	1,286 1,355	4,640 4,889	8,317 8,390	- 28,841 - 30,009
1990	III	11,284 13,611	1,005 1,186	3,737 4,153	7,290 7,081	- 23,316 - 26,031
2000	I	10,751 12,147	964 1,059	3,651 3,705	7,270 6,294	- 22,636 - 23,205
Cast Iron						
1980	I	5,326 5,417	444 452	2,067 2,105	811 827	199 8,847 203 9,004
1990	I	5,078 5,206	210 338	1,622	821 715	198 7,929 163 8,156
2000	I	5,157 5,110	148 306	1,209 1,325	935 607	202 7,651 117 7,465

Table 29 (Cont'd)

			Eı	nergy Type	9		
Material and Year	Scenario	Coal	Petroleum	Natural Gas	Purchase Elec- tricity		Total
Nodular Iron							
1980	I	7,345 7,480	612 623	2,907 2,963	1,157 1,180	294 300	12,315 12,546
1990	I	6,980 7,181	290 467	2,282 2,435	1,175 1,018	293 241	11,030 11,342
2000	I	7,086 7,014	205 420	1,703 1,851	1,338 858	299 173	10,631 10,316
Malleable Iron							
1980	I	8,144 8,296	678 691	3,239 3,302	1,294 1,320	332 339	13,687 13,948
1990	I	7,734 7,963	322 517	2,544 2,713	1,316 1,138	330 272	12,246 12,603
2000	I	7,849 7,768	228 465	1,899 2,059	1,498 958	337 195	11,811
Copper							
1980	I	21,266 20,951	7,321 8,196	4,857 4,958	14,408 14,314	35 37	47,887 48,456
1990	III	21,610 17,789	4,288 6,033	3,733 4,033	14,542 12,155	56 31	44,229
2000	I	23,745 18,388	3,010 5,441	3,166 3,729	15,241 12,451	70 31	45,232 40,040
Aluminum							
1980	I	1,700 2,251		26,380 35,648		11,010 ^a 15,543 ^a	75,065 97,266
1990	I	2,900 2,558		20,346 30,716	30,212	7,767 ^a	62,702 84,970
2000	I	3,847 2,971	1,141	17,505 28,780	30,341	5,860 ^a	58,694 80,731

Table 29 (Cont'd)

		975. 707	En	ergy Type			
Material and Year	Scenario	Coal	Petroleum	Natural Gas	Purchased Elec- tricity	Other	Total
Lead							SETT
1980	I	2,545 2,461	187 271	2,086 2,086	5,621 5,621	1,139 1,139	11,578 11,578
1990	I	2,624 2,561	75 182	1,432 1,793	5,000 5,568	1,018 1,101	10,149
2000	III	2,849 2,492	75 100	1,021 1,890	5,186 5,283	1,018 1,062	10,149 10,827
Zinc							
1980	I	8,551 8,715	42 42	13,276 13,113	8,175 8,175	138 138	30,182 30,183
1990	I	9,018 7,857	36 37	9,926 11,300	7,983 6,930	120 124	27,083 26,248
2000	I	9,899 8,186	37 36	8,926 10,863	8,447 7,088	122 121	27,431 26,294
Ni cke 1							
1980	I	2,477 2,596	363 363	7,174 7,056	7,937 7,937	-	17,951 17,952
1990	III	4,032 2,441	348 283	5,942 6,314	7,672 7,212	=	17,994 16,250
2000	I	4,798 2,831	341 285	5,310 6,016	7,686 7,253	=	18,135 16,385
Titanium							
1980	I	1,900	12,062 12,062	6,937 6,937	117,487 117,487	40,871 40,871	179,79
1990	III	1,785 1,710	10,712 11,342	6,152 6,243	100,288 105,738	34,740 36,784	153,67 161,81
2000	I	1,760 1,652	9,551 10,530	5,738 5,894	89,842 98,332	30,976 34,151	137,86 150,55

Table 29 (Cont'd)

Material and Year		Energy Type					
	Scenario	Coal	Petroleum	Natural Gas	Purchased Elec- tricity	Other	Total
Tires							beed
1980	III	6,956 7,036	10,494 10,615	14,232 14,396	11,045 11,138	Ξ	42,727 43,185
1990	III	7,503 5,565	9,098 8,394	12,536 11,385	11,148 8,890	Ξ	40,285 34,324
2000	I	9,910 5,592	7,248 8,436	10,514 11,442	11,057 9,194	-	38,729 34,664
Lithium Sulfide				ion Not D	etermined		
1980	III			8,551			63,000 63,000
1990	III						56,700 60,480
2000	I						53,550 57,960
Lithium Chloride			Distribut	ion Not D	etermined		10 10 10 10 10 10 10 10 10 10 10 10 10 1
1980	I						36,400 36,400
1990	I						32,760 34,940
2000	I						30,940 33,490

Table 29 (Cont'd)

Energy Type								
Material and Year	Scenario	Coal	Petroleum	Natural Gas	Purchased Elec- tricity	Other Total		
Potassium		Ginza						
Hydroxide/ Potassium Chloride								
1980	I					4,590 4,590		
1990	I					4,330 4,470		
2000	I					4,210 4,400		
Silicon			Distribu	tion Not	Determined			
1980	III					46,850 48,070		
1990	III			- 897		41,900 45,600		
2000	III					39,500 44,370		
Sulfur			Distribu	tion Not	Determined			
000,6580	A11					443		
Carbon/ Graphite	A11	100	196	396	406	- 1,000		
Ceramics								
1980	I	10,400	2,400 2,800	23,200 24,760	4,000 4,000	- 40,000 - 40,000		
1990	I	15,200 10,000	1,600 2,400	19,200 23,600	4,000 4,000	- 40,000 - 40,000		
2000	I	16,800 12,000	1,200 2,000	18,000 22,000	4,000 4,000	- 40,000 - 40,000		

Table 29 (Cont'd)

Material and Year		Energy Type					
	Scenario	Coal	Petroleum	Natural Gas	Purchased Elec- tricity	Other	Total
Glass	banlaretë	toll no.	Distributi			100	Fetaga
1980	III	196 196	1,617 1,715	6,664 6,664	1,078 980	245 245	9,800 9,800
1990	I	465 241	1,256 1,637	5,952 6,452	1,395 1,059	233 241	9,301 9,630
2000	I	900 285	765 1,568	4,860 6,318	2,250 1,093	225 238	9,000 9,502
Sound Deadeners							
1980	I	126 56	1,596 1,666	1,218 1,218	1,113 1,113	2,954 2,954	7,007 7,007
1990	I	637 191	962 1,485	806 1,049	1,164 1,083	2,932 3,010	6,501 6,818
2000	I	897 255	702 1,398	650 968	1,235 1,068	3,016 3,037	6,500 6,726
Lithium			Distribut	tion Not I	Determined		2000
1980	III						197,800 197,800
1990	I						178,000 189,890
2000	I						168,150 181,970
Cobalt							
1980	I	16,240 15,823	5,858 6,549	004,01	6,902 6,607		29,000 28,979
1990		15,570 14,750	3,425 5,321	005, 71	6,955 6,269	Ξ.	25,950 26,340
2000		15,372 15,014	2,196 4,794	15,800 17,000	6,832 6,532		24,400 26,340

Table 29 (Cont'd)

to hater !		Energy Type					
Material and Year	Scenario	Coa1	Petroleum	Natural Gas	Purchased Elec- tricity	Other	Total
Plastics							
1980	III	9005	13,116 13,607	32,938 34,171	3,577 3,711	-	49,631 51,489
1990	I	-	12,735 13,274	31,983 33,336	3,473 3,620	-	48,191 50,230
2000	I	2012	12,704 13,464	31,904 33,813	3,465 3,672	=	48,073 50,949
Sodium							
1980	I	4,416 4,416	184 184	-	40,940 40,940	460 460	46,000 46,000
1990	I	4,032 4,239	168 177	-	37,380 39,302	420 442	42,000 44,160
2000	I	3,974 4,063	166 169	.=	36,846 37,665	414 423	41,400 42,320
Paint							
1980	I	1,582 1,582	1,246 1,246	2,709 2,709	1,463 1,463	-	7,000 7,000
1990	I	1,469 1,539	1,157 1,212	2,516 2,635	1,359 1,423	-	6,501 6,809
2000	I	1,469 1,519	1,157 1,196	2,516 2,601	1,359 1,409	-	6,501 6,720
Sulfuric Acid							
	A11	-	-	19	Neg.	1	20
Zinc Chloride	A11		Distribu	tion Not	Determined		18,600
Magnesium							
	A11	-	537	65,156	100,061	13,246	179,000

Table 29 (Cont'd)

Material and Year		Energy Type					
	Scenario	Coal	Petroleum	Natural Gas	Purchased Elec- tricity	Other	Total
Vehicle Fabrication ^b						Soli	JESLY
1980	I	1,478 1,383	416 427	3,359 3,587	1,346 1,383	-	6,600 6,780
1990	I	2,167 1,408	334 415	2,514 3,415	1,285 1,342	Ξ	6,300 6,580
2000	III	2,505 1,643	267 408	2,164 3,099	1,265 1,320		6,200 6,470

aLargely hydroelectricity.

bEnergy for vehicle fabrication is per pound of vehicle.

REFERENCES

- Hudson, C., et al., Vehicle Characterization for the TAPCUT Project: Materials, Energy and Residuals of Manufacture, Argonne National Laboratory Report ANL/EES-TM-188 (Nov. 1981).
- Glenn, D.F., Annual Report: Technical and Economic Feasibility of Thermal Energy Storage, prepared for the U.S. Energy Research and Development Administration by Space Division, General Electric Co. (1976).
- 3. Hall, E.H., Evaluation of the Theoretical Potential for Energy Conservation in Seven Basic Industries, Report No. PB-244772, prepared for the Federal Energy Administration, Office of Energy Conservation and Environment, by Battelle Columbus Laboratories (1975).
- 4. Automotive Manufacturing and Maintenance (Report of a panel of the Interagency Task Force on Motor Vehicle Goals beyond 1980), Office of the Secretary of Transportation, U.S. Dept. of Transportation (1976).
- 5. Singh, M.K., et al., Energy Assessment of the U.S. Department of Energy Electric and Hybrid Vehicle Program, Argonne National Laboratory Report ANL/CNSV-13 (Nov. 1980).
- Gordian Associates, The Potential for Energy Conservation in Nine Selected Industries -- The Data Base, Report No. PB-243611, prepared for the Federal Energy Administration, Office of Conservation and Environment (1974).
- Freeman, S.D., et al., A Time to Choose: America's Energy Future, final report by the Energy Policy Project of the Ford Foundation, Ballinger Publishing Co., Cambridge, Mass. (1974).
- 8. Young, J.D., The Future of Man-Made Engineering Materials, Automotive Engineering, 88(3):55 (March 1980).
- 9. Fels, M.F., Comparative Energy Costs of Urban Transportation Systems, Transportation Research, 9:297-308 (1975).
- Project Independence Blueprint, Final Task Force Report, Energy Conservation in the Manufacturing Sector, 1954-1990, Report No. PB-248495, Federal Energy Administration, Interagency Task Force on Energy Conservation (1974).

- 11. Hyde, R.W., et al., Environmental Considerations of Selected Energy Conserving Manufacturing Process Options: Vol. VIII, Alumina/Aluminum Industry Report, Report No. EPA-600/7-76-034N, prepared for the U.S. Environmental Protection Agency by Arthur D. Little, Inc. (1976).
- Stamper, J.W., and H.F. Kurtz, Aluminum: Mineral Commodity Profiles, Report No. MCP-14, Bureau of Mines, U.S. Dept. of the Interior (1978).
- 13. Boercker, S.W., Energy Use in the Production of Primary Aluminum, Report No. ORAU/IEA-78-14(M), prepared for the U.S. Dept. of Energy, Office of Policy and Evaluation, by the Institute for Energy Analysis, Oak Ridge Associated Universities (1978).
- 14. Lee, C., et al., Energy and Environmental Analysis of the Lead-Acid Battery Life Cycle, Final Report No. HIT-725, prepared for the U.S. Dept. of Energy, Division of Energy Storage Systems by Hittman Associates, Inc. (1978).
- 15. Lower Energy Process for Copper Refining, Chemical and Engineering News 58(23):7 (June 9, 1980).
 - 16. Reding, J.T., and B.P. Shepherd, Energy Consumption: Paper, Stone/Clay/ Glass/Concrete, and Food Industries, Report No. PB-241926, prepared for the U.S. Environmental Protection Agency, Office of Research and Development, by Dow Chemical, U.S.A. (1975b).
 - 17. Battelle Columbus Laboratories, Energy Use Patterns in Metallurgical and Nonmetallic Mineral Processing, Report No. PB246357, prepared for the U.S. Bureau of Mines (1975).
 - 18. McNamee, J.P., et al., Annual Survey of Manufactures: 1975 Fuels and Electric Energy Consumed, Statistics for the United States, Report No. PB-275772, Industry Division, U.S. Bureau of the Census (1977).
- Myers, G.M., Energy Consumption in Manufacturing, report to the Energy Policy Project of the Ford Foundation, Ballinger Publishing Co., Cambridge, Mass. (1974).
 - Biles, E.S., et al., 1972 Census of Manufactures, Special Report Series: Fuels and Electric Energy Consumed, Report No. MC72(SR)-6, U.S. Dept. of Commerce (1973).
 - 21. Podder, A., C. Bosma, and D. Sullivan, Life Cycle Environmental Analysis of the Sodium-Sulfur, Zinc-Chlorine, and Lithium-Metal Sulfide Batteries, Draft Report No. H-C0198/007-79-896D, prepared for the U.S. Dept. of Energy by Hittman Associates, Inc. (1979).

22. LaBelle, S.J., et al., Technology Assessment of Productive Conservation in Urban Transportation -- Final Report, Argonne National Laboratory Report ANL/ES-130 (Nov. 1982).

X

